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ABSTRACT 

STABILITY AND CHANGE IN GOAL ORIENTATION AND THEIR 
RELATIONSHIP WITH PERFORMANCE: TESTING 

DENSITY DISTRIBUTIONS USING LATENT TRAIT-STATE MODELS 

Michael Charles Mihalecz 
Old Dominion University, 2011 

Director: Dr. James P. Bliss 

Goal orientation has been proposed to influence a number of training and work 

outcomes. However, results have been inconsistent and predicted relationships are 

weaker than anticipated (Payne, Youngcourt & Beaubien, 2007). Weak findings may be 

due to inconsistencies in how goal orientation is conceptualized and operationalized 

(DeShon & Gillespie, 2005; Grant & Dweck, 2003; Kaplan & Maehr, 2007). One such 

inconsistency is the treatment of goal orientation as a stable trait or a malleable state. 

Issues of state-versus-trait have long fueled the person-situation debate in personality 

psychology. Fleeson (2001) offered a solution for integrating the two theoretical 

perspectives called the density distribution approach. By incorporating Fleeson's 

approach with Latent Trait-State (LTS) covariance matrix models (Steyer, Ferring, & 

Schmitt, 1992) this study tested the hypothesis that goal orientation, whether measured as 

a general trait, a domain-specific trait, or state, is density distribution. In addition, LTS 

models were hypothesized to provide a better method for examining the predictive 

relationship between goal orientation and achievement-related performance in an 

academic setting. Results were generally supportive of the first set of hypotheses, but not 

the second. Theoretical and practical considerations are discussed. 
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CHAPTER I 

INTRODUCTION 

Goal orientation has received considerable attention in the organizational literature 

over the past fifteen years (e.g., Button, Mathieu, & Zajac, 1996; Farr, Hofmann, 

Ringenbach, 1993; Kozlowski et al., 2001; Phillips & Gully, 1997; VandeWalle, 1997). 

According to DeShon and Gillespie (2005), "goal orientation has become one of the most 

frequently studied motivational variables in applied psychology and is currently the 

dominant approach in the study of achievement motivation (p. 1096)." It has been 

theorized to influence a number of training and work outcomes, for example knowledge-

based learning, metacognition, self-efficacy, and task performance (Kozlowski et al., 

2001; Salas & Cannon-Bowers, 2001, VandeWalle, 1997). However, empirical findings 

have been inconsistent and predicted relationships have been weaker than anticipated 

(Payne, Youngcourt & Beaubien, 2007). Weak findings may be due to inconsistencies in 

how the construct is conceptualized and then operationalized (e.g., DeShon & Gillespie, 

2005; Grant & Dweck, 2003; Kaplan & Maehr, 2007). 

One such inconsistency is the temporal stability of goal orientation. Despite the 

large amount of research, there remains poor agreement whether the construct is best 

described as a stable trait, a malleable state, or a quasi-trait that may be influenced by the 

situation. When the research has addressed both the trait-like and state-like attributes of 

goal orientation, they are often treated as dichotomously rather than a single underlying 

construct (e.g., Kozlowski et al., 2001). As an example, state goal orientation is 

commonly treated as a proximal outcome of trait goal orientation (Payne et al., 2007). 

Issues of state-versus-trait have long been a concern in personality psychology 
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and are referred to as the person-situation debate. Fleeson (2001) offered a solution to 

integrate both sides of the debate called the density distribution approach to personality, 

where personality attributes are a density distribution of states influenced by trait and 

situation. I hypothesized goal orientation to be better conceptualized as a density 

distribution than currently as a state or a trait. All goal orientation measures include trait

like and state-like variance which can be assessed longitudinally using latent trait-state 

(LTS) models, a structural equation modeling approach for deriving trait and state 

variance components. 

The present study investigated the latent structure of goal orientation and its 

relationship with performance. First, it tested how well Fleeson's (2001) density 

distribution theory applies to goal orientation using LTS structural equation models. 

Second, it investigated whether LST modeling of density distributions provided 

additional value when examining the predictive relationship of goal orientation with 

achievement-oriented performance in an educational setting. 

GOAL ORIENTATION 

First researched in developmental and educational psychology and later adopted 

by organizational scholars (Button et al., 1996; Farr, Hofmann, & Ringenbach, 1993; 

Kozlowski et al., 2001), goal orientation has been proposed to influence various 

performance outcomes through the motivation-related strategies individuals adopt. While 

there is no single definition of goal orientation, DeShon and Gillespie (2005) identified 

five alternative definitions in the literature, alternately classifying goal orientation as 

goals, traits, quasi-traits, a mental framework, or beliefs. Defined as goals, goal 
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orientation is the types of situationally specific achievement goals adopted and pursued in 

achievement settings (e.g., Elliot, 1999). As a trait, goal orientation is defined as a stable 

dispositional trait motivating individuals to develop or demonstrate ability in 

achievement situations (e.g., VandeWalle, 1997). The quasi-trait definition is similar. In 

this case, goal orientation is defined as a "somewhat stable individual difference factor 

that may be influenced by situational characteristics" (p. 28; Button et al., 1996). The 

forth definition is an a priori mental framework or achievement goal pattern describing 

how individuals perceive and respond in achievement situations (Ames & Archer, 1988). 

The final definition of goal orientation is an individual's beliefs concerning the 

malleability of his or her ability or intelligence. While only two of the definitions make 

explicit reference to stability or variability, these attributes are implied in details such as 

"situationally specific", "a priori mental framework or achievement goal pattern", and 

"individual's beliefs". Although there is no common consensus about stability, goal 

orientation has been defined as having both trait-like and state-like qualities. The 

definitions, while not drastically different, are one of several inconsistencies in the goal 

orientation literature. 

In an effort to reconcile the multiple definitions and create a common ground, I 

combined compatible elements of the various definitions to create a broader definition of 

goal orientation. Goal orientation is a somewhat stable individual difference that 

describes how individuals perceive and act in achievement situations. It provides a 

mental model for how individuals cognitively and affectively construe achievement 

situations as well as how they attend to, interpret, evaluate, and act on achievement 

information. Furthermore, goal orientation describes the achievement goals that they 
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pursue in efforts towards developing or demonstrating ability. The expression of goal 

orientation may be influenced by salient features of the situation. While this definition 

may be too broad to be useful 

Goal orientation includes three dimensions which describe several types of goal 

strategies: learning, performance-prove, and performance-avoid. Learning goal 

orientation is associated with a belief that ability is malleable while the performance goal 

orientations are associated with a fixed ability. When an individual adopts a learning 

goal orientation (also known as mastery goal orientation), he or she seeks to improve 

knowledge or increase competence in a given activity (Button et al., 1996). A 

performance-prove goal orientation is the extent to which an individual seeks to 

demonstrate task competence for the purpose of favorable judgments, whereas a 

performance-avoid goal orientation is the extent an individual avoids negative judgments 

of their competence (Elliot & Harackiewicz, 1996; VandeWalle, 1997). The dimensions 

are modestly correlated but generally considered to be independent. 

Individuals who adopt a learning orientation respond to challenges with increased 

effort and feedback seeking behavior (Button et al., 1996; VandeWalle & Cummings, 

1997). According to Brett and VandeWalle (1999), individuals with a high learning 

orientation focus on development and refinement of skills and knowledge during training. 

Learning goal oriented individuals are concerned with increasing their competence and 

consider their ability in a given area to be malleable. They seek challenging tasks and 

increase effort under difficult conditions. When faced with failure, individuals with a 

learning orientation respond well to negative feedback and attempt to incorporate the 

information in future performance (Elliot & Dweck, 1988). Mistakes are viewed as 



www.manaraa.com

5 

opportunities to build competence. 

Individuals who adopt a performance-prove orientation focus on comparing 

themselves favorably to others (Brett & VandeWalle, 1999). Such individuals have a 

preoccupation with performance and social comparison. They are concerned with 

securing favorable judgments of their competence. In addition, they are more interested 

in demonstrating their ability than acquiring skills or improving their ability. 

Individuals who adopt a performance-avoid orientation are preoccupied with 

concealing their lack of ability and avoid negative judgments from others (Brett & 

VandeWalle, 1999). They avoid task difficulties (Phillips & Gully, 1997). In addition, 

they react to failure with low self-efficacy and avoid setting goals. Their beliefs promote 

a behavior pattern marked by inaction and they avoid unfavorable judgments. They seek 

situations that offer easy success. They avoid challenges and their performance declines 

in the face of obstacles. When faced with failure, individuals with a performance-avoid 

orientation attribute it to low ability, demonstrate negative affect, and may seek to 

withdraw from the activity. They view mistakes and negative feedback as a criticism of 

their competence. Similar to those adopting a performance-prove orientation, 

individuals with a performance-avoid orientation are preoccupied with the judgment of 

others in performance and learning situations. 

To summarize, individuals adopting a high learning goal orientation are focused 

on their personal mastery of achievement-related tasks. High performance-prove 

individuals are directing effort to demonstrate their performance by competitive striving 

against others on achievement-related tasks. Finally, individuals high in performance-

avoid goal orientation are preoccupied with avoiding failure in achievement-related tasks. 
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As mentioned previously, goal orientation research has been plagued by 

inconsistent findings that are difficult to reconcile (Elliot & Trash, 2001; Grant & Dweck, 

2003). According to DeShon and Gillespie (2005), this is due to both conceptual and 

operational inconsistencies. One conceptual inconsistency would be the five competing 

definitions of goal orientation mentioned earlier. Another inconsistency, the stability of 

goal orientation, has resulted from the confusion surrounding the plurality of definitions. 

It has been conceptualized as a stable disposition, having the characteristics of a trait 

(e.g., Button et al., 1996; VandeWalle, 1997), and as transient, subject to situational 

influences and having the characteristics of a state (e.g., Dweck, 1986; Stevens & Gist, 

1997). Adding to the inconsistencies and confusion surrounding goal orientation is the 

issue of domain specificity. Some researchers have conceptualized goal orientation as a 

trait existing within a specific context or domain, such as work, academics, or athletics 

rather than as a general trait (e.g., VandeWalle, 1996; 1997). An individual's level of 

academic-specific learning goal orientation may be different than his or her level of 

sports-specific learning goal orientation. The research on trait and state goal orientation 

are reviewed in more detail next. 

Trait Goal Orientation 

The majority of goal orientation research has treated the construct as a stable 

disposition and measured it though self-assessment questionnaires. Previous research has 

examined the relationship between trait goal orientation several motivational processes, 

including general self-efficacy (e.g., Chen, Gully, Whiteman & Kilcullen, 2000), domain-

specific self-efficacy (e.g., VandeWalle, Cron, & Slocum, 2001), self-set goals (e.g., 

Chen et al., 2000), learning strategies (e.g., Ford et al, 1998; Kozlowski et al., 2001; 
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Schmidt & Ford, 2003), feedback seeking (e.g., VandeWalle & Cummings, 1997), and 

state anxiety (e.g., Chen et al., 2000; Horvath, Scheu, & DeShon, 2004). Other research 

has explored the relationship between trait goal orientation and other dispositions, such as 

the five-factor model of personality (e.g., VandeWalle, 1996) and need for achievement 

(Horvath et al., 2004). Research has also examined how well goal orientation predicts 

achievement-related outcomes such as learning (e.g., Bell & Kozlowski, 2002), academic 

performance, task performance (e.g., Yeo & Neal, 2004), and job performance. 

As mentioned previously, trait research has also distinguished general from 

domain-specific goal orientations. Button et al. (1996) conceptualized goal orientation as 

a general trait. VandeWalle (1997), on the other hand, conceptualized goal orientation as 

domain-specific. This perspective is closer to Dweck's (2000) belief that individuals 

hold different goal orientation patterns depending on the context. It is also bears some 

resemblance to Button et al.'s view that goal orientation may be influenced by situational 

characteristics. 

VandeWalle (1997) suggested that individuals can hold different goal orientations 

in the broad domains such as work, academics, and athletics. Measures with increased 

situational specificity may provide improved insight about the influence of motivational 

processes on learning and performance. According to Kanfer (1992), distal motivational 

constructs, such as self-efficacy or performance anxiety, are likely to impact outcomes 

through more specific and proximal versions of the motivational constructs, i.e., domain-

specific self-efficacy and state anxiety. 

State Goal Orientation 

Some goal orientation research has conceptualized goal orientation as an internal 
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state subject to situational influences. In these studies, goal orientation has been 

experimentally manipulated and/or recorded using self-report state measures. 

Within an experimental setting, changes in goal orientation have been induced by 

manipulating one of a number of situational cues or aspects of the environment. 

Research has demonstrated that goal orientation can be influenced by manipulating 

situation cues through a variety of techniques (e.g., Chen et al., 2000; Gist & Stevens, 

1998; Kozlowski et al., 2001; Kraiger, Ford, & Salas, 1993; Martocchio, 1994; Stevens & 

Gist, 1997). As an example, the manipulation employed by Kozlowski et al. (2001) 

induced change in state goal orientation and resulted in performance inconsistent with 

measured trait goal orientation. These techniques include comparing competitive versus 

individual reward structures (Ames, 1984; Ames, Ames, & Felker, 1977), comparing 

performance with or without an audience present (Carver & Sheier, 1981), and by 

comparing "test" instructions to "game" or neutral instructions. 

In an effort to organize different goal orientation manipulations, Kaplan and 

Maehr (2007) placed situational cues that describe the types of manipulations into six 

categories which follow the acronym TARGET. Categories include the type of task, the 

autonomy in deciding how to complete the task, the type of recognition given for 

completing the task, the assignment of individuals to different groups, how task progress 

is evaluated, and time to complete the task. 

But few studies claiming to manipulate goal orientation directly measure change 

in goal orientation. Instead they attribute changes in performance to goal orientation 

rather than goal type or feedback or whatever the study manipulated (e.g., Steven & Gist, 

1997). Other studies measure trait goal orientation and treat experimental manipulations 
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as moderators of the relationship between goal orientation and performance (Chen & 

Mathieu, 2008) or simply as another independent variable influencing one or more 

outcomes (e.g., Kozlowski et al., 2001). 

In one notable exception, Steele-Johnson, Beauregard, Hoover, and Schmidt 

(2000) conducted a manipulation check and found that their goal orientation 

manipulation was related to perceptions of goal orientation. Participants reported that 

they felt they could improve their skills. Unfortunately, the researchers did not report 

details about the measure they used, such as the psychometric properties or a list of 

questionnaire items. 

Some researchers have attempted to directly measure goal orientation states while 

also measuring goal orientation traits, which is similar to how affective traits and 

transient mood states are conceptualized in workplace emotion research (e.g., Judge & 

Kammeyer-Mueller, 2008). These studies demonstrate that state goal orientation 

measures possess different relationships with variables of interest than trait measures. 

For example, Boyle and Klimoski (1995) found state measures of goal orientation were 

related to an experimental manipulation, but that traits were not. As additional 

examples, confirmatory factor analyses (CFA) by Button et al. (1996) and Fisher and 

Ford (1998) provided evidence for the dual existence of trait and state orientation. 

Hansberger (1999) included all three levels of goal orientation specificity (i.e., general 

trait, domain-specific trait, and state) while examining dynamic driving performance and 

found that domain and state measures exhibited different relationships with performance 

as well as self-reported expertise. These studies provided evidence of construct validity 

for distinct trait and state elements of goal orientation. 
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Previous research suggests state goal orientation may alter the relationship 

between trait goal orientation and other variables of interest. Breland and Donovan 

(2005) found that state goal orientation mediates the relationship between trait goal 

orientation and self-efficacy. Although a main effect for both trait and state goal 

orientation directly influenced self-set goals, Ward and Heggestad (2004) found induced 

goal orientation moderated the relationship between trait and self-set goals. In a 

longitudinal study, Horvath et al. (2004) found a stronger relationship between state goal 

orientation and self-set performance goals than trait goal orientation and self-set 

performance goals during an undergraduate statistics course. 

Meta-Analyses 

The goal orientation literature is confusing at best. As mentioned earlier, 

conceptual and operational inconsistencies have resulted in muddy findings that are 

difficult to represent as a body of research. Fortunately, several meta-analyses have been 

conducted (Day, Yeo, & Radosevich, 2003; Payne et al., 2007; Rawsthorne & Elliot, 

1999; Utman, 1997). 

Two meta-analyses examined research experimentally manipulating goal 

orientation i.e., state goal orientation. Rawsthorne & Elliot (1999) identified differences 

in the effect of induced goal orientation states on behavioral and self report measures of 

intrinsic motivation. Performance goals were associated with significantly lower levels 

of a behavioral measure of intrinsic motivation during experimental free-choice period 

(i.e., task persistence; d= -.17), and a self-report measure of intrinsic motivation (i.e., 

self-report interest in an experimental task; d = -.12). The effect size was larger when 

limited to the studies inducing a performance-avoid versus a learning goal orientation (d 
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= -.46). When limited to the studies inducing a performance-approach versus learning 

goal orientation the effect size was not significant. Utman (1997) found a moderate 

effect size for an induced learning goal orientation lead to better task performance than an 

induced performance goal orientation (d= .53). However, the learning goal advantage 

was limited to relatively complex tasks. In addition, the learning goal advantage was 

larger when learning goals were moderately pressuring and when participants were tested 

alone. 

Day et al.'s (2003) meta-analysis compared the two-factor model of trait goal 

orientation (e.g., Button et al., 1996) to the three-factor model (e.g., VandeWalle, 1997). 

The three-factor model explained more variance (11%) in performance than the 2-factor 

model (4%). Performance included job performance, scholastic achievement, athletic 

achievement, or performance on a laboratory task. Results indicated positive but small 

relationships between learning goal orientation and performance (p = .10) as well as 

between performance-prove goal orientation and performance (p = .08). The results also 

indicated a negative relationship between performance-avoid goal orientation and 

performance (p = -.28). 

Payne et al. (2007) provide a more comprehensive meta-analysis. They examine 

the relationship of trait goal orientation and state goal orientation to a number of other 

variables, including several types of performance. Payne et al. assessed the temporal 

stability of trait goal orientation using sample-weighted means to calculate a coefficient 

of stability. They found the sample-weighted mean r for learning was .66, for 

performance-prove it was .70, and for performance-avoid it was .73. They also found 

that the longer the time between measures, the smaller the coefficients. 
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Payne et al. (2007) examined the relationship between trait goal orientation and 

multiple performance outcomes. They found a modest positive relationship between 

learning (performance on a test or exam) and learning goal orientation (p = . 16), no 

significant relationship between learning and performance-prove goal orientation, and a 

modest negative relationship between learning and performance-avoid goal orientation (p 

= -. 17). In addition to learning they also examined the relationship between academic 

performance and goal orientation. While learning is typically assessed through 

performance on a test or exam, academic performance is typically operationalized as a 

final grade in a course. Academic performance showed a modest positive relationship 

with learning goal orientation (p = .16), no relationship with performance-prove goal 

orientation, and a weak negative relationship with performance-avoid goal orientation (p 

= -.06). Contrary to theory, performance-prove goal orientation has virtually no 

relationship with learning or academic performance. In addition, learning and 

performance-avoid goal orientations had small effect sizes with learning and academic 

performance, falling short of the theorized relationship between goal orientation and 

training outcomes (e.g., Button et al., 1996; Farr et al., 1993; Kozlowski et al., 2001). 

Payne et al. (2007) also found a small positive relationship between task 

performance and learning goal orientation (p = .05), no meaningful relationship between 

task performance and performance-prove goal orientation, and a negative but small 

relationship between task performance and performance-avoid goal orientation (p = -.13). 

Job performance had a small positive relationship with learning goal orientation (p = . 18) 

and performance-prove goal orientation (p = . 11), however the meta-analysis contained 

no studies that explored the relationship between job performance and performance-avoid 
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goal orientation. Again, relationships between work performance outcomes and goal 

orientation were smaller than predicted (e.g., Button et al., 1996; Farr et al., 1993; 

Kozlowski et al., 2001). 

The Payne et al. (2007) meta-analysis also examined the relationship between 

state goal orientation and the performance variables used in the trait meta-analysis. 

Learning had a moderate positive relationship with state learning goal orientation (p = 

.31), however the result is based on only 2 studies. Unfortunately, no studies included in 

the meta-analysis examined learning with performance-prove or -avoid goal orientations. 

Academic performance was not related to either learning or performance-prove goal 

orientations. No studies examined the relationship between academic performance and 

performance-avoid goal orientation. Payne et al. found that task performance was not 

related to state learning goal orientation, but did find that state performance-prove goal 

orientation yielded a small positive relationship with task performance (p = .16). No 

studies included in the meta-analysis examined state performance-avoid goal orientation 

and task performance. Small positive relationships were also found between job 

performance and state learning goal orientation (p = .22) and state performance-prove 

goal orientation (p = .09). Only one study examined the relationship between job 

performance and performance-avoid goal orientation and was therefore was not included 

in the analysis. The theorized relationship between state goal orientation and learning or 

task performance is tenuous at best. 

Finally, Payne et al. (2007) examined the incremental validity of the three goal 

orientation factors on job performance beyond the influence of cognitive ability and the 

five-factor model of personality. Goal orientation predicted a small but significant 
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amount of incremental validity in job performance above cognitive ability and the five-

factor model of personality {AR2 = .04, R2 = .33, p < .01. Learning goal orientation is 

largely responsible for the additional variance ifi - .23, p < .05). Again, the predictive 

validity of goal orientation on job performance is less than anticipated (e.g., Button et al., 

1996; Farr et al., 1993; Kozlowski et al., 2001). 

Summary of Goal Orientation Literature 

To summarize the literature, goal orientation reflects the particular goal-types 

individuals adopt in achievement situations. It consists of three largely-independent 

factors: learning, representing goals emphasizing the development of competence; 

performance-prove, representing goals emphasizing the demonstration of competence; 

and performance-avoid, emphasizing the avoidance of demonstrations of incompetence. 

Each dimension is associated with a different effect. In general, learning goal orientation 

is associated with adaptive response patterns. Performance-avoid associated with 

maladaptive response patterns, while performance-approach effects are highly variable. 

However, the empirical support for these assertions is mixed. According to the results of 

the meta-analyses, the relationships between goal orientation and important outcomes are 

often smaller and less consistent than expected. 

Goal orientation has been treated as a trait and a state. When treated as a trait, the 

construct has been further divided into general and domain-specific traits. When 

operationalized as a state, it has been experimentally manipulated or directly assessed 

using state measures. Attempts to integrate the trait and state perspectives have examined 

the relationship between trait and state dimensions. Results suggest they are related yet 

distinguishable from one another. Both are related, albeit weakly, to performance. 
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Additionally, the relationship between trait goal orientation and performance is believed 

to be moderated by state goal orientation. Our understanding of the stability of goal 

orientation and its relationship with performance may be clarified by adopting a new 

paradigm, one different than the current state versus trait dichotomy. An alternative for 

integrating the different perspectives may be found in attempts to resolve the person-

situation debate in personality psychology. 

THE PERSON-SITUATION DEBATE IN PERSONALITY PSYCHOLOGY 

The person-situation debate has been an ongoing argument in personality 

psychology. The core of the debate can be summarized into five points of disagreement 

(Fleeson & Leicht, 2006). First, the personality perspective argues that personality is a 

powerful predictor of future behavior and advocates the study of individual differences. 

The situation perspective argues that the situation is a more powerful predictor of 

behavior than personality. Second, the person perspective predicts that an individual will 

behave in a similar manner over time because behavior is determined by stable 

personality. The behavior may not be similar in absolute terms, but will be similar in 

relative or rank position. The situation perspective predicts that the behavior of an 

individual will vary considerably due to changes in the situation over time. Third, the 

person perspective has largely studied the structure of covariance structure between 

individual differences. The situation perspective has principally studied psychological 

processes that describe the sequence of events that start with a situation and end with a 

behavior and a resulting outcome. Forth, the person perspective emphasizes patterns of 

acting, feeling, and thinking over the cognitive determinants of the patterns. The 
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situation perspective emphasizes several cognitive processes, including perception, 

interpretation, and adaptation. The final point of debate is where the perspective 

considers variance of interest to reside: between individuals or within an individual. For 

the person perspective, variance between persons is of interest; for the situation 

perspective, variance within one person and across time is of interest. Extensive and 

ongoing bodies of research support both perspectives (Cervone, 2005; Ozer & Benet-

Martinez, 2006). 

Both perspectives from the five points of disagreement that define the person-

situation debate are also found in the goal orientation literature and can be identified in 

the five definitions mentioned earlier (i.e., goals, trait, quasi-trait, mental framework, and 

beliefs; DeShon and Gillespie, 2004). Similar to the first point of the debate, goal 

orientation is an individual difference that influences future behavior. However, the 

situation may induce changes in levels of goal orientation and affect achievement-related 

behavior. Parallel to the second point, goal orientation is treated as a stable trait but may 

be influenced by situational characteristics. Comparable to the third point, goal 

orientation has been studied in observational, quasi-experimental settings (i.e., Park, 

Schmidt, Scheu, & DeShon, 2007) and in true experimental settings (i.e., Kozlowski et 

al., 2001). Like the fourth point of the debate, several definitions of goal orientation 

emphasize patterns of acting feeling and thinking, such as the goals and trait definitions, 

while others highlight perception, interpretation and adaptation, like the quasi-trait, 

mental framework, and beliefs definitions. Finally, both the variance between and within 

subjects has been examined in goal orientation studies, similar to the fifth and last point 

of the person-situation debate. Fleeson (2001) developed a theory called the density 
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distribution approach that integrates the two perspectives of the person-situation debate in 

personality psychology. 

Integrating Person and Situation Perspectives 

According to the density distribution approach to personality (Fleeson, 2001), 

personality is the "accumulation of the everyday behavior of an individual" (p.8). A core 

part of personality is an individual's behavior. An individual's personality should be 

described in everyday real situations. A large sample of an individual's actions must be 

accumulated and assessed because he or she does not act the same way in different 

situations. 

The density distribution approach incldues three primary characteristics: the 

personality state, trait manifestation and distributions. The personality state is a construct 

that describes how an individual is acting, feeling and thinking at the moment. It is 

measureable in the same way that personality traits can be assessed, using the same 

content, breadth and scale. Trait manifestation is the term used to describe that traits are 

manifest in states. States are the form that traits take as they express themselves. 

According to Fleeson, the key to understanding traits is to explain the process in how 

traits manifest in states. Finally, an individual's state should be assessed on multiple 

occasions because he or she deviates from his or her behavior at least some of the time. 

This data forms a distribution or density distribution of state levels for the individual. 

Fleeson (2007) proposed that state behavior is caused by several factors, which 

include psychologically active characteristics of the situation and internal physiological 

or cognitive structures that support an individual's typical way of acting (e.g., traits). 

Psychologically active characteristics of situations are defined as the characteristics of 
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situations that elicit a change in states and alter the degree to which a trait manifests itself 

in that situation. The concept is similar to situational strength, "the implicit or explicit 

cues provided by external entities regarding the desirability of potential behaviors" 

(Meyer, Dalai, & Hermida, 2010; p. 122). While a situation characteristic may influence 

the current state of a psychological construct, the same characteristic may not be 

psychologically relevant to other constructs. For example, a situation containing a large 

group of friends may influence the current state of extroversion, but have little influence 

on another Big Five factor, neuroticism. Situations that share a specific domain (e.g., 

school or work) may still differ in the degree to which they contain a psychologically 

active characteristic. For example, different academic situations may not include the 

same characteristics that are psychologically active for goal orientation, such as 

performance expectations or type of feedback received following performance. 

Psychologically active characteristics produce situation-state contingencies. A 

situation-state contingency is a systematic relationship between a state and a situation 

characteristic. Contingencies describe how an individual acts in one situation compared 

to him- or herself in another situation. Contingencies differ in the direction and 

magnitude they alter the level to which a trait is manifest in a state. For example, Kaplan 

and Maehr (2007) suggested six characteristics of situations that may influence different 

dimensions of goal orientation, and include the nature of the task, the amount of 

autonomy given in performing a task, the details of performance that are given 

recognition, collaboration versus competition, feedback strategies, and allocation of time. 

These characteristics may be situation-state contingencies for goal orientation. Each of 

these situational characteristics is believed to change the degree to which goal orientation 
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is expressed. However, the direction and strength of each characteristic's influence is 

different relative to one another and to goal orientation dimension (e.g., learning, 

performance-prove, performance-avoid). 

Fleeson has found support for the density distribution approach, finding 

significant levels of both within-person variability and between-person stability in 

interpersonal trust (Fleesson & Leicht, 2006) and scales of the Five Factor model of 

personality (Fleeson, 2001). In a study of the Five Factor model of personality, Fleeson 

(2007) found evidence of situation-based contingencies that influence the expression of 

trait manifestation. In addition, he found that the contingencies helped explain for the 

sizable with-person variability in behavior, individuals differed reliability in their 

contingencies and situational characteristics that served as contingencies differed by trait. 

Fleeson's theory may provide a new framework for thinking about goal orientation, help 

clarify conceptual and operational inconsistencies, and improve our understanding of 

how goal orientation relates with performance. 

The next step is to identify an appropriate research method to test the applicability 

of the density distribution approach to goal orientation. Fleeson (2001), stated "if 

individual differences in behavior are best described as density distributions, a large 

amount of behavioral variability will be present within the typical individual, individual 

differences in distribution parameters will be highly stable, and within-person variability 

will be meaningful" (p. 1012). In a similar note, Dumenci and Windle (1998) stated that 

"a limitation to overcoming the trait-state dichotomy has been the development of 

measurement models and statistical procedures to simultaneously estimate parameters 

that correspond to both stable and labile features of behavior" (p. 405). Dumenci and 
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Windle suggest applying a class of longitudinal structural equation models known as 

latent trait-state (LTS) models. 

LATENT TRAIT-STATE MODELS 

LTS models assess stability and intraindividual differences in psychological 

attributes simultaneously (Steyer et al., 1992). These models have a longitudinal design, 

measuring attributes at multiple times. Figure 1 depicts a basic LTS model. In LTS 

models, a series of latent state variables (S*) is extracted from one or more manifest 

variables (Yk), one for each time period. The state represents an individual's level of an 

attribute at a particular point in time (&). The variance of the latent state variables is 

partitioned into two second-order factors: a common latent trait factor (7) representing 

stability over time, and an occasion-specific state residual (SR*), representing the 

variability associated with the situation plus the interaction between person and situation. 

Variance unexplained by trait or occasion is random measurement error (e). LTS models 

can account for stable patterns as well as situational variability. 
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SR 

SR. 

SR, 

Figure 1. Simplified latent trait-state model. 

Note. T = trait, S = state for k occasions in time, SR = state residual for k points in time, e 

= random measurement error for k occasions in time, and any observable variable Y. 

The most commonly used class of longitudinal models of change are latent 

growth curves models (e.g., Chan, 1998; McArdle & Epstein, 1987; Meredith & Tisak, 

1990). In latent growth curve models, individual growth curves are decomposed into 

latent variables representing an intercept and one or more components of change. An 

alternative is LTS models. These models have been used to estimate situational and trait 

influences when measuring a number of psychological attributes, including 

organizational commitment (Tisak & Tisak, 2000), attitudes towards non-citizen workers 

(Steyer & Schmitt, 1990), test anxiety (Schermelleh, Keith, Moosbrugger, & Hodapp, 

2004), personality scales from the Freiburg Personality Inventory (FPI), the NEO Five-

Factor Inventory (NEO-FFI), and the Eysenck Personality Inventory (EPI; Deinzer et al., 
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1995), stress (Kenny & Zautra, 1995), depression (Davey, Halverson, Zonderman, & 

Costa, 2004), mood (Steyer & Riedl, 2004), primary emotions such as happiness, anger, 

fear, and sadness (Eid & Diener, 1999), psychopathology (Steyer, Krambeer & 

Hannover, 2004), developmental psychopathology (Cole, 2006), and alcohol abuse 

(Dumenci & Windle, 1998). 

LTS models were originally suggested by Herzorg and Nesselroade (1987) nearly 

twenty-five years ago. Several variant LTS models have been developed since that time. 

These models added autoregressive functions between states (e.g., Kenny & Zautra, 

1995; Steyer & Schmitt, 1994) or occasions (Cole, Martin, & Steiger, 2005). Other 

adaptations have included first-order methods factors (Steyer et al., 1992) and the 

inclusion of 2 or more traits in hierarchical LTS models (Schermelleh et al., 2004). LTS 

models have also been adapted for categorical variables as latent class models (Eid & 

Langeheine, 1999), integrated with latent growth curve modeling (Tisak & Tisak, 2000) 

and generalized as a multitrait-multioccasion model (Dumenci & Windle, 1998). 

Individuals are not measured in an environmental vacuum. Rather, they are 

assessed in a situation that has the potential to influence their scores on a measured 

variable regardless of whether that measure was intended to provide a score on a state or 

a trait. Allport (1937) originally conceived of traits as ranges of behavioral possibilities 

that are activated according to situational demand. Furthermore, Mischel (1968) noticed 

that individuals behave similarly in different situations only to the degree that the 

situations share similar features. Hertzog and Nesselroade (1987) noted that most 

psychological attributes are neither strictly traits nor states, but have both trait and state 

components. 
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LTS models are ideal for testing if Fleeson's (2001) density distribution theory 

describes goal orientation better than either state or trait conceptualizations. According 

to Fleeson, a trait is manifest in a state that shares the same content, breath, and scale. 

The state is also influenced by psychologically active characteristics of situations, which 

alter the level to which a trait is expressed. Trait manifestation is analogous to a latent 

trait, while a psychologically active characteristic of a situation is analogous to a latent 

state residual. Finally, both Fleeson's personality state and LST theory's latent state are 

comprised of trait and situational components. 

LTS models may provide a method to integrate conceptualizations of goal 

orientation and explore the relationship between goal orientation and other variables. 

The expression of goal orientation (e.g., state goal orientation) is influenced by trait and 

characteristics of the situation. This can be modeled and tested using LST theory using 

goal orientation measures regardless of their intended level of temporal specificity (e.g., 

general trait, domain-specific trait, or state). The following section includes several 

hypotheses. They are divided into two groups: a) measurement model hypotheses and b) 

performance prediction hypotheses. 

MEASUREMENT MODEL HYPOTHESES 

Although trait measures are intended to assess goal orientation traits, when 

examined longitudinally, they will include both state-like and trait-like variance. When 

assessed across time, all goal orientation measures regardless of their intended level of 

stability include variance attributable to both sources. Trait measures will contain 

variance typically associated with states and, conversely, state measures will contain 
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variance associated with traits. A trait goal orientation measure may have a larger latent 

trait variance component than latent state variance component, but it will still have both 

components. A state goal orientation measure will also have both latent state and latent 

trait variance components, while the latent state component will likely be the larger of the 

two. The LTS models will provide a better fit to the variance/covariance structure of goal 

orientation than a latent trait model or a latent state model. Therefore, I assert the 

following hypotheses. 

HI a A latent trait-state model will provide a better fit for general trait learning 

goal orientation than either a trait or state model. 

Hlb A latent trait-state model will provide a better fit for general trait 

performance-prove goal orientation than either a trait or state model. 

Hlc A latent trait-state model will provide a better fit for general trait 

performance-avoid goal orientation than either a trait or state model. 

H2a A latent trait-state model will provide a better fit for domain-specific trait 

learning goal orientation than either a trait or state model. 

H2b A latent trait-state model will provide a better fit for domain-specific trait 

performance-prove goal orientation than either a trait or state model. 

H2c A latent trait-state model will provide a better fit for domain-specific trait 

performance-avoid goal orientation than either a trait or state model. 

H3a A latent trait-state model will provide a better fit for state learning goal 

orientation than either a trait or state model. 

H3b A latent trait-state model will provide a better fit for state performance-



www.manaraa.com

25 

prove goal orientation than either a trait or state model. 

H3c A latent trait-state model will provide a better fit for state performance-

avoid goal orientation than either a trait or state model. 

Hypotheses are grouped by the level of goal orientation specificity. Hypotheses 

la through lc make assertions about general trait goal orientation, Hypotheses 2a through 

2c relate to domain-specific trait goal orientation, and Hypotheses 3a through 3c concern 

state goal orientation. At each level of specificity there are hypotheses for learning, 

performance-prove and performance-avoid goal orientation. 

Hypotheses la through 3c were tested by comparing the fit of LTS models to state 

and trait models within a longitudinal design. Previous studies have modeled goal 

orientation states and traits (e.g., Button et al., 1996; Fisher & Ford, 1998). However, 

they did not include a second-order model of a single measure. Instead, they included 

first-order models of multiple goal orientation dimensions. 

PERFORMANCE PREDICTION HYPOTHESES 

Steyer et al. (1999) suggested trait-state models could provide a useful 

methodological tool for answering different research questions of personality psychology. 

One research question is determining the proportion of variance in observable variables 

attributable to trait effects, situation and/or interaction effects, and measurement error. 

This suggestion was used to formulate Hypotheses 1, 2, and 3. Steyer et al. (1999) also 

suggested applying LTS models to evaluate how a trait, freed from situational influences 

or situation-based contingencies, correlates with other variables. 
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The relationship between trait goal orientation and performance is commonly 

assessed using a trait measure, either general or domain-specific, administered once. 

Performance data may be collected at the same time or may be collected on different 

occasions and be aggregated in some way. This presents two problems. The first 

problem is that trait measures contain both variance associated with trait goal orientation 

and variance associated with the situation. This decreases the accuracy of trait measure 

and diminishes its relationship with performance outcomes. The second problem is that 

scores on the trait goal orientation measure may not accurately individuals' scores during 

later periods of performance. An LTS model containing manifest variables (i.e., trait 

measures) administered repeatedly throughout the period of performance would provide a 

more accurate assessment of the relationship between goal orientation and performance. 

The Payne et al. (2007) meta-analysis included two achievement-oriented outcomes 

important in academic and training settings: learning and academic performance. The 

learning outcome should not be confused with learning goal orientation. Learning is the 

acquisition and of declarative and procedural knowledge while academic performance is 

how well an individual performs on academic tasks over time. LTS models will offer a 

better description of the predictive relationship of goal orientation with learning and 

academic performance. Therefore, I propose the following sets of hypotheses. 

H4a A latent trait-state model will provide a better fit than a trait model when 

examining the relationship between general trait learning goal orientation 

and learning in an academic setting. 

H4b A latent trait-state model will provide a better fit than a trait model when 
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examining the relationship between general trait performance-prove goal 

orientation and learning in an academic setting. 

H4c A latent trait-state model will provide a better fit than a trait model when 

examining the relationship between general trait performance-avoid goal 

orientation and learning in an academic setting. 

H5a A latent trait-state model will provide a better fit than a trait model for 

explaining the relationship between general trait learning goal orientation 

and academic performance. 

H5b A latent trait-state model will provide a better fit than a trait model for 

explaining the relationship between general trait performance-prove goal 

orientation and academic performance. 

H5c A latent trait-state model will provide a better fit than a trait model for 

explaining the relationship between general trait performance-avoid goal 

orientation and academic performance. 

H6a A latent trait-state model will provide a better fit than a trait model for 

explaining the relationship between domain-specific trait learning goal 

orientation and learning in an academic setting. 

H6b A latent trait-state model will provide a better fit than a trait model for 

explaining the relationship between domain-specific trait performance-

prove goal orientation and learning in an academic setting. 

H6c A latent trait-state model will provide a better fit than a trait model for 

explaining the relationship between domain-specific trait performance-

avoid goal orientation and learning in an academic setting. 
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H7a A latent trait-state model will provide a better fit than a trait model for 

explaining the relationship between domain-specific trait learning goal 

orientation and academic performance. 

H7b A latent trait-state model will provide a better fit than a trait model for 

explaining the relationship between domain-specific trait performance-

prove goal orientation and academic performance. 

H7c A latent trait-state model will provide a better fit than a trait model for 

explaining the relationship between domain-specific trait performance-

avoid goal orientation and academic performance. 

Hypotheses are grouped by the level of goal orientation specificity and 

performance outcome. Hypotheses 4a through 4c concern the relationship between 

general trait goal orientation and learning in an academic setting. Hypotheses 5a through 

5c relate to the relationship between general trait goal orientation and academic 

performance. Hypotheses 6a though 6c examine the relationship between domain-

specific trait goal orientation and learning in an academic setting. Finally, Hypotheses 7a 

through 7c relate to the relationship between domain-specific trait goal orientation and 

academic performance. Similar to earlier hypotheses, these sets of hypotheses include 

learning, performance-prove and performance-avoid goal orientation. 

Steyer, et al. (1999) suggested applying LTS models to determine how different 

LTS factors correlate with other variables. State measures are typically used to assess 

how an individual perceives, interprets and adapts to changes in the situation. Adding an 

LTS structure when modeling the relationship of a psychological state with performance 
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could be promising. I predict that it will provide a more accurate representation of the 

influence of the situation on goal orientation expression and its relationship with two 

achievement-oriented outcomes: learning and academic performance. More specifically, 

I predict that: 

H8a A latent trait-state model will provide a better fit than a state model for 

explaining the relationship between state learning goal orientation and 

learning in an academic setting. 

H8b A latent trait-state model will provide a better fit than a state model for 

explaining the relationship between state performance-prove goal 

orientation and learning in an academic setting. 

H8c A latent trait-state model will provide a better fit than a state model for 

explaining the relationship between state performance-avoid goal 

orientation and learning in an academic setting. 

H9a A latent trait-state model will provide a better fit than a state model for 

explaining the relationship between state learning goal orientation and 

academic performance. 

H9b A latent trait-state model will provide a better fit than a state model for 

explaining the relationship between state performance-prove goal 

orientation and academic performance. 

H9c A latent trait-state model will provide a better fit than a state model for 

explaining the relationship between state performance-avoid goal 

orientation and academic performance. 
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Hypotheses 8a to 8c investigate the relationship between state goal orientation 

and learning in an academic setting, while Hypotheses 9a to 9c concern the relationship 

between goal orientation and academic performance. Like earlier sets of hypotheses, 

these include learning, performance-prove and performance-avoid goal orientation. 

Figure 2 contains a summary of the study hypotheses. For the first nine 

hypotheses, Hypotheses la through 3c, I test measurement models of goal orientation and 

for the remaining 18, Hypotheses 4a through 9c, I assess how well the models predict 

performance in an academic (i.e., learning in an academic setting and academic 

performance). The hypotheses include the three dimensions of goal orientation (learning, 

performance-prove and performance-avoid) at three levels of specificity. Hypotheses 1 a 

through lc, 4a through 4c, and 5a through 5c pertain to general trait goal orientation. 

Hypotheses 2a through 2c, 6a through 6c, and 7a through 7c examine domain-specific 

goal orientation. And finally, Hypotheses 3a through 3c, 8a through 8c, and 9a through 

9c examine state goal orientation. 
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MEASUREMENT PERFORMANCE 
MODEL PREDICTION 
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Figure 2. Summary of study hypotheses. 
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CHAPTER II 

METHOD 

The current study will assess how well Fleeson's (2001) density distribution 

theory describes goal orientation measured at three levels of specificity (general trait, 

domain-specific trait, and state) using LTS covariance matrix models. 

PARTICIPANTS 

Study participants were undergraduate students enrolled in an introductory 

psychology course at Old Dominion University during the fall semester of 2007. 

Enrollment for the course was 244 students with a slightly higher female enrollment. As 

a course requirement, students had to earn 4 research credits through volunteering as 

subjects in Psychology Department experiments or through written assignments. 

Participants were able to earn a total of 4 research credits through their participation, one 

for each period of data collection. Participation was voluntary and all responses were 

confidential. 

DETERMINATION OF SAMPLE SIZE 

There are several different rules-of-thumb for recommended sample size when 

using structural equation modeling. According to Kline (1998), sample size should be at 

least fifty plus eight times the number of latent variables in the model. The most 

complex model included in the hypotheses contains four state, one trait, and two method 

variables for a total of seven latent variables, requiring a minimum sample size of 106. 
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Another rule-of-thumb offered by Mitchell (1993) is having a sample 10 to 20 times 

larger than the number of variables in the model. This estimate would require a 

minimum of between 70 to 140 cases. Bentler (1985) recommends a minimum of 5 cases 

for each estimated parameter. The most complex model proposed contains 31 parameter 

estimates and would require 155 cases. With full student participation, a 25% dropout 

rate over the course of the study would leave 187 participants and a dropout rate of one-

third (33%) would leave 167 participants. With dropout of over 40% (150 participants) 

the sample would still meet the requirements of the first two rules of thumb and come 

within 5 cases of the third. 

Students enrolled in an introduction to psychology course were chosen as the 

sample because they provided the largest intact group in which individuals enrolled in a 

learning setting over an extended duration (14 weeks) could be followed. This was the 

most pragmatic option to meet or exceed recommended sample sizes estimates and 

accommodate the attrition common to longitudinal research. 

MEASURES 

Demographics 

During time 1, participants were required to provide basic demographic 

information, including sex, age, academic major, and academic year. 

Goal Orientation 

Eight candidate goal orientation questionnaires were considered for the current 

study, including those from Button et al. (1996), Elliot (1999), Elliot and Church (1997), 

Elliot and McGregor (2001), Grant and Dweck (2003), Heggestad (1997), Horvath, 
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Scheu, and DeShon (2004), and VandeWalle (1996; 1997). The selection of a goal 

orientation measure was based on four criteria: 

1. The measure must have been developed through a documented 

psychometrically rigorous procedure driven by a sound understanding of 

theory. 

2. The measure needs to include scales for learning, performance-prove, and 

performance-avoid goal orientations. 

3. The measures must include scales for each of three levels of 

operationalization: general trait, domain-specific trait, and state. A measure 

could also meet this criterion if items from the scales are easily modifiable to 

assess goal orientation at all three levels. 

4. The measure needs to contain scales with enough items to create multiple 

parcels. A parcel, also known as a testlet, is created by combining items from 

a scale into several smaller subscales. Parcels provide an increased likelihood 

of achieving a proper model solution and a better model fit when using 

structural equation modeling (Marsh, Hau, Balla, & Grayson, 1998; Rogers & 

Schmitt, 2004; Yuan, Bentler & Kano, 1997). According to Bandalos and 

Finney (2001), conducting a multi-factor confirmatory factor analysis (CFA) 

at the item level should be avoided. The covariance matrix of items can be 
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large enough to exceed the limits of structural equation software like Amos or 

LISREL. Furthermore, individual items have low reliability and may depart 

from normality, resulting in a confirmatory model that may not fit the data 

well (Bagozzi & Heatherton, 1994; Kishton & Widaman, 1994). A common 

solution is the use of parcels or item subscales. To meet this criterion, scales 

must include at least enough items to create three 2-item subscales. 

All candidate measures met the first requirement. The second criterion excluded 

one of the more commonly used measures, the General Performance and Learning Goal 

scales (Button et al., 1996), which only contains scales for performance and learning 

orientations, as the name implies. Neither Elliot and Church's (1997) academic-domain 

measure nor a revised version of the measure (Elliot, 1999) met the third criterion. 

VandeWalle's (1997) work-domain and academic-domain (VandeWalle, 1996) measures 

did not meet the third or fourth criteria. Two 4-factor measures, by Elliot and McGregor 

(2001) and Grant and Dweck (2003), did not include enough items per scale to meet the 

fourth criteria. Horvath and colleague's (2004) general and domain-specific goal 

orientation measures also had too few items to meet the last criteria. Only one goal 

orientation measure met all criteria: the Motivational Trait Questionnaire (MTQ; 

Heggestad, 1997; Heggestad & Kanfer, 2000). 

While it was originally intended as a measure of Kanfer and Heggestad's (1997) 

motivational trait framework, Heggestad and Kanfer (2000) recommend the MTQ as a 

measure of general goal orientation. The three main scales of the MTQ include personal 

mastery (learning goal orientation), competitive excellence (performance-prove goal 
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orientation), and motivation anxiety (performance-avoid goal orientation). Ward and 

Heggestad (2004) used the MTQ as a measure of goal orientation while examining the 

relationships among general and domain-specific goal orientations, contextualized goals, 

and goal orientated situations. Most likely, the MTQ has not garnered wider use in 

published studies because it is a proprietary psychological assessment test with controlled 

distribution. 

The full version of the MTQ contains 183 items, while a short form includes 48 

items taken from the longer form. To assess general goal orientation, the current study 

included an abbreviated version of the measure containing six items from each of the 

three scales. This 18-item version contains items having the highest item-total 

correlation for each scale, based on the results of Heggestad (1997). Six item scales will 

allow the creation of two three-item parcels. A six-point Likert-type response scale, 

ranging from 1 (very untrue of me) to 6 (very true of me), will be used for each item. 

Scale values will be computed as an average of all items comprising the scale. The items 

for the abbreviated MTQ are presented in Appendix A. 

Items from the abbreviated MTQ were modified to create an academic domain 

measure of goal orientation. For example, in the class was added to several items. As 

another example, items describing standards and performance were modified as 

academic standards and academic performance, respectively. All items retained a six-

point Likert-type response scale. In addition, the instructions were modified from "this 

questionnaire asks you to respond to statements about your attitudes, opinions, and 

behaviors" to "this questionnaire asks you to respond to statements about your attitudes, 

opinions, and behaviors relative to college courses". The items for the academic domain 



www.manaraa.com

37 

instrument are in Appendix B. 

The MTQ was also adapted to assess state goal orientation. According to Fleeson 

and Leicht (2006), state dimensions have the same content, breadth and scale as their trait 

counterparts. Individual items remained the same; the instructional set was modified. 

Rather than asking about general attitudes, the instructions asked participants to respond 

based on how they feel at that particular moment. The statement "In deciding on your 

answer for these questions, consider how you currently feel" was added to the directions. 

A copy of the state goal orientation instrument is in Appendix C. 

Learning and Academic Performance 

Operationalization of learning and academic performance was based on the meta

analysis by Payne et al. (2007). Learning is the acquisition of declarative and procedural 

knowledge and is frequently assessed in goal orientation studies as performance on a test 

of exam. Academic performance is broader than learning and indicates how well an 

individual performs on multiple academic-related tasks over a period of time. It is 

typically assessed as a final course grade or overall grade-point average. In this study I 

measured learning as an individual's score on the quiz or test administered closest in 

occurrence to one of the four administrations of the goal orientation measures. Learning 

measures included quiz 1 (Time 1), quiz 2 (Time 2), quiz 7 (Time 3), and final exam 

(Time 4). The length of time between the episode of performance and measure 

administration varied between 10 minutes (Time 4) and 5 days (Time 1). Based on Payne 

et al. (2007), academic performance was operationalized as final grade in the course. In 

the current study, final grade was comprised of a weighted average of eight quiz and 4 

exam scores. 
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PROCEDURE 

Participants were informed of the current study during the first class meeting of 

the semester. Goal orientation measures were administered to participants at four time 

periods during the course of the semester, including the first week of the course (Time 1), 

the week grades for the first test were posted (Time 2), a week without a major 

assignment such as a test (Time 3), and immediately before the final exam (Time 4). 

According to Davey (2001), the spacing of longitudinal data collection waves should 

represent occasions that reflect the full variability of the context across time. The spacing 

between the waves of data collection was based on presence or absence of aspects of a 

setting that influence goal orientation, such as after receiving performance feedback 

(Time 2) and performing under time pressure (Time 4; Kaplan & Maehr, 2007). The 

battery contained demographic items (sex, age, academic year, and academic major) as 

well as the questionnaires found in Appendices A, B, and C. 

DATA ANALYSIS 

Data Screening 

Analyses proceeded in two phases. First, I screened the data and conducted a 

confirmatory factor analysis (FFA) of the scales. Second, I tested all hypotheses using 

structural equation modeling with Amos 17.0 (SPSS, 2009). Data screening included 

procedures outlined by Tabachnick and Fidell (2001): 1) check for data coding accuracy 

and univariate outliers by examining variable value frequencies as well as means and 

standard deviations, 2) test for nonlinearity and heteroscedasticity by checking pairwise 

plots, 3) identify nonnormal variables by checking skewness, kurtosis, and probability 
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plots, 4) indentify multivariate outliers through Mahalanobis distance tests, 5) evaluate 

variables for multicolinearity and singularity, and 6) assess the degree of missing data 

and test for relationships between missing data and experiment variables. Logistic 

regression analysis was used to test for a pattern of missing data related to variables of 

interest and no relationship was found. 

According to Schafer and Graham (2002), the most highly recommended 

approaches to address missing data include maximum likelihood (ML) and multiple 

imputation (MI). Missing data for the current study was addressed using the ML feature 

of Amos 17.0. Amos 17.0 employs a ML algorithm known as full-information maximum 

likelihood (FIML). ML provides a method to address the loss of statistical power 

associated with casewise or pairwise deletion or other ad hoc procedures and to address 

bias due to variables related to missingness (Collins, 2006). For all analyses, means were 

estimated as this is a requirement when estimating missing data using FIML. 

A confirmatory factor analysis (CFA) was conducted on the scales for all four 

occasions to test the factor structure using Amos 17.0. CFA was conducted for several 

reasons. First, Byrne (2010) recommends conducting a CFA whenever using a 

measurement instrument with a new group. Second, items from the original general trait 

scales were modified to create state and domain-specific trait scale counterparts. This 

may have altered the covariance structure of the items. CFA results helped to ensure well 

fitting measurement models prior to hypothesis testing. 

Model fit was evaluated through interpretation of several fit indices, including 

root mean square error of approximation (RMSEA), Comparative Fit Index (CFI), and 

Tucker-Lewis Index (TLI), and likelihood-ratio test. Browne and Cudeck (1993) 
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suggest a RMSEA < .05 is a good fit for a model, RMSEA < .08 is a reasonable fit, and 

RMSEA > . 10 is a poor fit. According to Hu and Bentler (1999), models with CFI and 

•j 
TLI values > .95 display a good fit. Small % values relative to degrees of freedom also 

suggest a good fitting model (Bollen, 1989; Hu & Bentler, 1998). 

Reliability (i.e., Cronbach's coefficient alpha) was computed using the FIML 

implied means and covariance matrices following Enders' (2004) recommended 

reliability reporting practices with missing data. Enders recommended reporting the 

reliability and a 95% confidence interval (CI) using the ML estimate of the means and 

covariance matrix. 

A potential confound in multi-group or longitudinal research is lack of 

measurement equivalence/invariance (ME/I; Vandenberg & Lance, 2000). Assessing 

ME/I provides evidence that the same construct is being measured across time or between 

groups and is measured with equal precision. Violations of ME/I can be as harmful to 

statistical interpretation as the inability to establish reliability and validity. 

Golembiewski, Billingsley and Yeager (1976) outlined a typology describing different 

types of change when longitudinally measuring latent variables using self-report 

measures. Alpha change is a shift in reported scores. Beta change is a shift in the 

measurement scale. The final type of change, gamma change, is a shift in the definition 

of the construct being measured. Measures are not equivalent or invariant if beta or 

gamma change is found. Alpha change is an expected attribute of state or attitudinal 

scores. However, beta and gamma change make comparison of scores between occasions 

of measurement impossible, as scores are on different scales or measure different 

constructs. 
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All measures were tested for beta and gamma change using the multiple-group 

analysis feature of Amos 17.0. The procedure used to test for beta and gamma change 

was based on the approach outlined by Schmitt, Pulakos, and Lieblein (1989). Absence 

of gamma change is demonstrated if a measure has the same factor structure at each point 

in time. This is also known as configural invariance (Vandenberg and Lance, 2000). 

Another test for gamma change is equivalent factor variance-covariance matrices. 

Equality of factor loadings can serve as a test of beta change. 

Gamma and beta change was assessed through several fit indices, including a x 

•j -y 
difference (Ax ) test and CFI difference (ACFI) test. A significant Ax is interpreted as 

evidence that measures are not equivalent. According to MacCallum, Roznowski, and 

Necowitz (1992), the Ax2 test may be too stringent of a test for ME/I. Cheung and 

Rensvold (2002) suggest using ACFI as a more reasonable test alternative. According to 

their suggestion, evidence of equivalence should be based on a difference in CFI values 

having a value less than or equal to 0.01. 

Hypothesis Testing 

Estimation of correlated residuals in SEM is restricted to a small number of 

circumstances and, in most cases, should not be practiced (Landis, Edwards, Cortina, 

2009). According to Cortina (2002) the practice of correlated residuals should only 

proceed when a strong a priori reason exists for doing so. One example would be the 

case of longitudinal data with identical measures across time periods (Landis et al., 

2009). In this situation, residuals attached to identical items but at different occasions of 

measurement will correlate. 

These constraints define the manifest variables as parallel across occasions of 
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measurement. The resulting model is similar to the correlated uniqueness multitrait-

multimethod model suggested by Kenny and Zuatra (2001) which they note as the 

preferred choice for initial estimations of LTS models. 

When testing hypotheses in the current study, all models included a number of 

equality constraints. Based on the results of the ME/1 tests, scales were treated as having 

several equivalent measurement properties across occasions. Equality constraints were 

added to like item factor loadings and the covariance between like item residuals were 

constrained to be equal. For example, the factor loadings for item 2 at Times 1, 2, 3, and 

4 were fixed as equal. The covariances between item 2 residual at Times 1, 2, 3, and 4 

were also fixed as equal. Appendices M through U illustrate the models used to test 

Hypotheses la through 3c with the described constraints. 

Hypotheses la through 3c 

Model fit. For the first group of hypotheses, a series of non-nested models using 

Amos's FIML estimation were tested using the covariance matrix of variables. For 

Hypotheses la through 3c, RMSEA, CFI and TLI were used to evaluate model fit using 

the same criteria outlined for the CFA analysis (e.g., good fit identified as CFI and TLI 

values > .95 and RMSEA < .05). The x2 goodness-of-fit test and RMSEA 90% 

confidence interval were also used to assess model fit. A non-significant x2 indicates a 

well fitting model. A well fitting model is also indicated by a narrow RMSEA 

confidence interval with a lower bound value at or near zero and an upper bound of < .08 

(MacCallum, Browne, & Sugawara, 1996). For selecting the best fitting model, several 

alternative fit criteria were used. 

When comparing non-nested models, as in the current study, a Ax2 test is not 
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•j 
appropriate. The A% test can only be used when testing fit among nested models. When 

testing non-nested models, alternative fit criteria are used to determine the better fitting 

model (Vandenberg & Grelle, 2009). Unlike the Ax,2 test, these criteria are not part of the 

null hypothesis approach to testing, but are based on alternative approaches to inferential 

statistics, including information-theoretic and Bayesian statistics (Burnham & Anderson, 

2010). 

The Akaike Information Criterion (AIC; Akaike, 1973, 1987) is an information-

theoretic alternative for statistical model selection and inference. It is an approximately 

unbiased estimator of the expected Kullback-Leibler (KL) information of a fitted model. 

KL information, also called the KL distance or KL divergence, is a measure of 

information loss from information theory and probability theory. KL information, I(f, g), 

is a measure of the amount of information lost when using model g to approximate full 

reality, f. It is a measure of expected distance from approximating a model to reality. 

AIC is an asymptotically unbiased estimator of expected K-L distance. Burnham and 

Anderson (2010) recommend using AICC, a second-order information criterion, as an 

alternative to AIC when n/K < 40, where n is the sample size and K is the number of 

estimated parameters. 

Another alternative criterion is the Bayesian Information Criterion (BIC; 

Schwartz, 1978). The BIC is also computed from the likelihood of seeing a model given 

the data, rewarded by goodness of fit and penalized for lack of parsimony (Burnham & 

Anderson, 2010). While BIC is more conservative than AIC, Burnham and Anderson 

(2004) recommend using the AIC in the social sciences. Their rationale is the BIC was 

developed according to the philosophy that a true model exists, but these types of models 
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are not characteristic of the social sciences. In contrast, the AIC assumes that a best-

fitting approximation is among the models tested. 

All three criteria, AIC, AICc, and BIC, were computed for models for testing 

Hypotheses la through 3c. Following the procedure described by Burnham and 

Anderson (2010), all models were rank ordered by criterion value; the model with the 

smallest value was selected as the best for inference. The selected model minimizes the 

information lost when approximating full reality and is the best model given the 

candidate models and the data. 

In addition to simple ranking, there are two types of evidence concerning the 

evaluation of alternative hypothesized models when using an information-theoretic 

approach: model probabilities and evidence ratios. Model probability is expressed as an 

Akaike weight (w,). It is the probability that Model i is the K-L best model, given the 

model set and the data. Unlike an AIC value, model probability w, is absolute, however, 

still conditional on the model set. 

Akaike weight w, is based on the AIC difference (A/) between the AIC values for 

Model i and the best fitting model (model with the smallest AIC value; AICmm). The A, is 

the estimate of the expected K-L information between the best model and the ith model. 

K-L information is the distance from each model to full reality, whereas A, is the relative 

distance or information loss between the ith model and the best model. The A, values are 

then used to calculate w„ model probabilities. These probabilities are another source of 

evidence in favor of model i as being the actual K-L best model in the candidate set. The 

second additional type of information-theoretic evidence is evidence ratios. The evidence 

ratio of Akaike weights for model i over model j can be calculated as w, / w}. The 
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evidence ratio can also be expressed as the normalized probability that Model i is 

preferred over Model j as the K-L best model (Wagenmakers & Farrell, 2004). Based on 

the advice of Anderson (2008) concerning the ratio of estimated parameters to sample 

size, A„ w„ and evidence ratios were calculated for Hypotheses la through 3c using 

values for AICc rather than AIC. 

Candidate models. The same set of non-nested models was used for each 

dimension of goal orientation (i.e., learning, performance-prove, performance-avoid). 

The selection of trait, state, and LTS models for the tests of alternative models was based 

on multiple methodological reasons, including theory and empirical research. 

A latent trait model can be constructed containing a single trait on which manifest 

(i.e., observed) variables for all occasions are loaded. However, theory and previous 

research identify several reasons why a first-order autoregressive model is superior to a 

single latent trait model for longitudinal modeling of traits. First, using state and trait 

anxiety data Steyer et al. (1992) provide evidence that latent trait models provide a poor 

fit for longitudinal trait data. Based on model fit and the pattern of modification indices, 

they contend that the poor fit is due to situational and interactional effects. Second, a 

lack of invariance among structural means (i.e., changes in the latent mean) will result in 

a poor fit of a single latent construct to represent a construct over time. Furthermore, 

Hertzog and Nesselroade (1987) argue that first-order autoregressive models, or 

longitudinal Markov simplex models, are appropriate for longitudinal modeling of traits. 

This model contains an autoregressive function linking one occasion of measurement to 

the next, for example, the latent state at time one is autoregressed on the latent state at 

time two, the latent state at time 2 is autoregressed on the latent state at time three, and so 
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on. The autoregressive coefficients may be interpreted as a stability coefficient. Herzog 

and Nesselroade state that these stability coefficients are determined by, but should not be 

equated with, intraindividual stability. 

Kenny and Zuatra (2001) lament that too often researchers with longitudinal data 

only estimate one LTS model without considering alternatives. In a review of LTS 

modeling, Davey (2001) commented, "Only by considering and comparing across a range 

of theoretically and empirically meaningful models can the researcher gain insight into 

the dynamic processes at work in his or her data" (p. 268). Therefore, seven trait state 

and LTS models (Figures 2 through 7) were included for testing Hypotheses la through 

3c. These models differ by the inclusion of equality constraints on higher-order loadings 

and an autoregressive function on state or occasion factors. All models are listed in Table 

1. 

There are several options for modeling states over time. The first option is a 

model containing a latent variable for each occasion of measurement. The second 

option would include the addition of a first-order autoregressive function connecting 

adjacent periods of measurement. First-order autoregressive models are a common 

method to represent and analyze longitudinal data. 
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Table 1 

Set of Candidate Models for Testing Hypotheses la Through 3c 

Model Description 

Number 

1 Trait model 

2 State model 

3 State model with first-order autoregressive state factors (state-AR 

model) 

4 LTS model 

5 LTS model with equality constraints on latent trait factor loadings 

(LTS-EC model) 

6 LTS model with first-order autoregressive latent state factors (LTS-

ARS model) 

7 LTS model with first-order autoregressive occasion factors (latent 

TSO model) 

Based on these reasons, a latent trait model (Figure 3) and two latent state models 

in testing the fit of alternate models (Figures 4 and 5) were included in the study. The 

first latent state model is a first-order autoregressive model, which may also be 

considered appropriate for longitudinal modeling of traits (Hertzog & Nesselroade, 

1987). The second latent state model is based on Steyer et al. (1992) and is the higher-

order autoregressive model described above. This model is referred to as the state-AR 
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model. The autoregressive function defining this model may be due to a higher-order 

latent trait variable. However if the simpler model can describe the data just as well as or 

better than a more complex LTS model, it was selected as the superior model for reasons 

of parsimony. 

Y32 

24 

Figure 3. Model 1 for Hypotheses la through 3c: Trait model. 

Note. T = trait for four waves and any observable variable Y,k. 
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Figure 4. Model 2 for Hypotheses la through 3c: State model. 

Note. S = state for four waves, and any observable variable Yik. 
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Figure 5. Model 3 for Hypotheses la through 3c: State model with first-order 

autoregressive state factors. 

Note. S = state for four occasions, Q = uniqueness factor for three occasions, and any 

observable variable Y,t. 

The first LTS model tested, Model 4, contained a state factor for each time period, 

a single trait factor, time-specific occasion factors, and random measurement error. A 

diagram of this model is located in Figure 6. 
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Figure 6. Models 4 and 5 for Hypotheses la through 3c: Latent Trait State model. 

Note. T = trait, SR* = state residual for four occasions across time, S* = state for four 

occasions across time, £ == random measurement error for four occasions across time, and 

three manifest variables Ylk for four occasions across time. 

Model 5, the LTS-EC model, is identical to Model 4 with the exception of 

additional equality constraints on the factor loadings from the latent trait to the four latent 

states. The addition of the constraints serves to represent the stable and constant level of 



www.manaraa.com

52 

influence exerted by a trait over time. 

Both Models 6 and 7, the LTS-AR and latent TSO models, contain an 

autoregressive component in the form of stability ft coefficients. Autoregressive models 

have previously been used in analyzing stability and change in longitudinal data 

(Joreskog, 1979). They model stability by a variable measured at one period predicting 

itself or another variable at a later time. State-trait models with autoregressive state 

factors have been used to examine stressors and desirable experiences in the human 

lifecycle (Kenny & Zautra, 1995, 2001) as well as young adult anxiety and older adult 

mood states (Hertzog and Nesselroade, 1987). 

Model 6, the LTS-ARS model, includes autoregressive state factors. This model 

would be most appropriate when a trait has a strong influence on a state and the strength 

of psychological active characteristics of the situation is weak. Model 6 is depicted in 

Figure 7. 
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Figure 7. Model 6 for Hypotheses la through 3c: Latent Trait State model with 

autoregressive states. 

Note. T = trait, SR* = state residual for four occasions across time, S* = state for four 

occasions across time, e = random measurement error for four occasions across time, and 

three manifest variables Y,k for four occasions across time. 

Model 7 contains autoregressive occasion factors and is depicted in Figure 8. The 

model also contains residual factors (^) for the second through fourth occasion factors. 

Also, occasion residuals were constrained to be equal. This model includes the influence 
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of a stable situation. This model would be most appropriate for a strong but stable 

situation, similar to the classroom setting in which the data for this study was gathered: 

the course was taught by a single instructor, included the same cohort of students, 

contained content the same general topic (Introduction to Psychology), and followed the 

same set of rules and expectations for classroom behavior and performance. According 

to Cole, Martin, and Steiger (2005), a LTS model with these constraints has the added 

advantage of reducing the number of improper solutions and reducing the standard error 

for all estimates. Cole et al. refer to the model as a latent TSO model. 
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Figure 8. Model 7 for Hypotheses la through 3c: Latent State Trait Occasion model. 

Note. T = trait, Ok = occasion for four periods across time, Cjt = uniqueness factor for 

three occasions, S* = state for four periods across time, e = random measurement error for 

four periods across time, and three manifest variables Ylk for four periods across time. 

Hypotheses 4a through 7c 

Candidate models. Both Hypotheses 4a through 4c and Hypotheses 6a through 6c 

examined the predictive relationship between goal orientation and learning in an 
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academic setting. However, they differed on the level of goal orientation specificity: 

general trait versus domain-specific trait, respectively. Table 2 lists the models used for 

testing Hypotheses 4a through c (i.e., general trait goal orientation predicting learning) 

and 6a through c (i.e., domain-specific trait goal orientation predicting learning). In the 

first model, goal orientation is modeled as a latent trait consisting of the manifest 

variables from Time 1. The four measures of learning corresponding to each of the four 

periods when the ability measures were administered. The four learning outcomes were 

operationalized as the first (Time 1), second (Time 2) and seventh (Time 3) quizzes and 

the final exam (Time 4). This model is illustrated in Figure 9. 

Table 2 

Set of Candidate Models for Testing Hypotheses 4a through 7c 

Model Description 
Number 

1 Latent trait model 

2 LTS model 

3 LTS model with autoregressive occasion factors (latent 

TSO model) 

For Model 2 (depicted in Figure 10), manifest variables from Times 2 through 4 

and a LTS factor structure with equality constraints on the trait coefficients were added. 

This model is based on Model 5, used to test Hypotheses la through 3c. Model 3 was 
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similar to the previous model with the addition of an autoregressive function on the 

occasion factors. This model is based on an autoregressive LTS models tested in earlier 

hypotheses (la through 3c) and can be found in Figure 11. 

Leaming3 

Learning2 

Learning4 

Learning 1 

Figure 9. Model 1 for Hypothesis 4a through 4c and Hypothesis 6a through 6c: 

Relationship between latent trait model of goal orientation and learning. 

Note. T = trait for three manifest variables K,* for one point in time, Learning 1 = learning 

outcome for Time 1: Learning2 = learning outcome at Time 2; Learning3 = learning 

outcome at Time 3; Learning4 = learning outcome at Time 4. 
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Figure 10. Model 2 for Hypotheses 4a through 4c and Hypothesis 6a through 6c: 

Relationship between LTS model of goal orientation and learning. 

Note. T = trait, SR* = state residual for four occasions across time, S* = state for four 

occasions across time, and three manifest variables for four occasions across time; 

Learningi = learning outcome for Time 1: Learning2 = learning outcome at Time 2; 

Learning3 = learning outcome at Time 3; learning4 = learning outcome at Time 4. 
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Figure 11. Model 3 for Hypothesis 4a through 4c and Hypothesis 6a through 6c: 

Relationship between LTS model of goal orientation and learning. 

Note. T = trait, O* = occasion for four periods across time, C# = uniqueness factor for 

three occasions, S* = state for four periods across time, and three manifest variables Ylk 

for four periods across time; Learningl = learning outcome for Time 1; Learning2 = 

learning outcome at Time 2; Learning3 = learning outcome at Time 3; learning4 = 

learning outcome at Time 4. 
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The models used to test Hypotheses 5a through 5c and Hypotheses7a through 7c 

were similar to those used for testing Hypotheses 4a through 4c. One difference being 

the learning outcome was replaced with academic performance. Academic performance 

was operationalized as final grade, which was the same as in the meta-analysis by Payne 

et al. (2007). In the current study, final grade consisted of a weighted average of four 

exam and eight quiz scores. Figures 12,13 and 14 outline the alternative models used for 

testing Hypotheses 5a through c and Hypotheses 7a through c. 

For Hypotheses 4a through 7c, Model 1 included only the observed variables 

from Time 1, while the alternative models contained the observed variables from all four 

occasions: Time 1, Time 2, Time 3, and Time 4. Model 1 is based on the psychometric 

concepts of true-score theory and latent-trait models (Allen & Yen, 1979) as well as 

simple linear regression (Pedhazur, 1997). In trait-score and latent-trait theories, latent-

trait or true score values are assumed to give all the necessary information needed for 

measuring an individual level of the trait. Additional test scores will not improve 

measurement or prediction of an individual's trait score. Furthermore, prediction in 

simple linear regression precludes the need to measure traits from more than one 

occasion. Based on the assumptions of simple linear regression, scores of the same latent 

trait from additional occasions would not improve prediction. 



www.manaraa.com

61 

AP 

Figure 12. Model 1 for Hypotheses 5a through 5c and Hypotheses 7a through 7c: 

Relationship between latent trait model of goal orientation and academic performance. 

Note. T = trait for three manifest variables y,* for one point in time, AP = academic 

performance. 
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Figure 13. Model 2 for Hypothesis 5a through 5c and Hypotheses 7a through 7c: 

Relationship between LTS model of goal orientation and academic performance. 

Note. T = trait, SR* = state residual for four occasions across time, S* = state for four 

occasions across time, and three manifest variables for four occasions across time; AP 

= academic performance. 
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Figure 14. Model 3 for Hypothesis 5a through 5c and Hypotheses 7a through 7c: 

Relationship between LTS model of goal orientation and academic performance. 

Note. T = trait, Ok = occasion for four periods across time, = uniqueness factor for 

three occasions, S* = state for four periods across time, and three manifest variables K,* 

for four periods across time; AP = academic performance. 
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Model fit. For Hypotheses 4a through 7c, the set of candidate models was tested 

using FIML estimation with the covariance matrix. Similar to the previous hypotheses, 

the same sets of models were used for the three dimensions of general trait goal 

orientation: learning, performance-prove, and performance-avoid. Models were non

nested and precluded the use of the chi-square difference test for selecting the best fitting 

model. In addition, Model 1, the latent state model, contained a subset of the variables 

from the covariance matrix and prevented the use of AIC and other alternative fit criteria. 

For Hypotheses 4a through 7c, the best fitting model was selected using several 

criteria. First, alternative models were compared based on comments by Vandeberg and 

Grell (2009). They suggest that non-nested models, "in the best-case scenario", can be 

compared using benchmark fit indices such as RMSEA, TLI, and CFI. The best fitting 

model is identified in the event that it meets or exceeds all of the cut-off values identified 

for good fit while the alternative models fail to meet those benchmarks. Models were 

assessed for goodness of fit using the procedure listed for testing Hypotheses la through 

3c. A good fitting model has a non-significant x2 goodness-of-fit test, a narrow RMSEA 

90% confidence interval with a lower bound close to zero and upper bound < .08, CFI > 

.95, and TLI > .95). For the current study, a model was identified as the best fitting if it 

met or exceeded goodness-of-fit indices cut-offs for good fit and other models failed to 

meet the benchmark cut-offs. 

However, fit indices only describe a model's lack of fit and do not reflect the 

extent to which the model is plausible (Byrne, 2010). According to Byrne, assessment of 

model quality should be based on multiple criteria. In a discussion of model assessment, 

Byrne mentions model usefulness when taking theoretical, statistical, and practical 
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considerations into account. Therefore the usefulness of models in Hypotheses 4 through 

7 will be evaluated by how well they predict outcomes identified by previous research. 

The second criterion for selecting the best fit was how well the model replicated or 

clarified the predictive relationship with learning and academic performance as noted in 

the Payne et al. (2007) meta-analysis. In the meta-analysis, they computed the estimated 

true mean correlation (p) between the three trait goal orientation dimensions (learning, 

performance-prove and performance-avoid) and two achievement-oriented outcomes 

(learning in an academic setting and academic performance). For predicting learning in 

an academic setting, learning goal orientation p = 0.16, performance-prove goal 

orientation p was not statistically significant, and performance-avoid = -0.17. For 

predicting academic performance, learning goal orientation p = 0.16, performance-prove 

goal orientation p was not statistically significant, and performance-avoid p = -.06. Goal 

orientation theory proposed that performance-prove goal orientation would predict the 

two achievement-related outcomes. Unfortunately, previous research has found the 

relationship to be small or more commonly, non-significant. LTS models may be more 

sensitive and better able to detect the relationship than commonly used trait models. In 

linear regression, the value of the standardized regression coefficient (Ji), which was 

computed in the SEM analysis of the current study, is the same as the correlation 

coefficient (r or population p), which was reported in the Payne et al. (2007) meta

analysis. The magnitude of both can be interpreted in the same way. 

To summarize, when testing Hypotheses 4a through 7c, the selection of the best 

fitting alternative models was based on achieving cut-off values for RMSEA, CFI, and 

TLI. It was also based on whether a model included a statistically significant relationship 
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with an achievement-related performance outcome and the magnitude of the regression 

coefficients (J3) with that outcome. 

Hypotheses 8a through 9c 

Candidate models. A description of the candidate models used to test Hypotheses 

8a through 9c is located in Table 3. For Hypothesis 8a through 8c, Model 1 was 

consisted of four latent states, one for each period of measurement. The criteria, learning 

in an academic setting, was modeled the same as earlier hypotheses (i.e., Hypotheses 4a 

through 6c). The latent state factors were associated with the learning outcome 

associated with the respective period of measurement. The model also contained 

regression paths connecting latent states at adjacent time periods, similar to Model 3 for 

Hypotheses la through 3c. A diagram of the model is located in Figure 15. Model 1 was 

tested against two alternative models that included an additional LTS structure for goal 

orientation (Figures 16 and 17). Model 2 included equality constraints on the structural 

paths from the latent trait to the latent states. Model 3 was the same as Model 2 with the 

addition of regression paths between occasion factors at adjacent time periods and 

equality constraints on the paths between occasions and states. 
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Table 3 

Set of Candidate Models for Testing Hypotheses 8a through 9c 

Model Description 
Number 

1 

2 

3 

Latent state model 

LTS model 

LTS model with autoregressive occasion factors 
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Figure 15. Model 1 for Hypotheses 8a through 8c: Relationship between latent state 

model of goal orientation and learning. 

Note. Sk = state for four periods across time, = uniqueness factor for three state, and 

three manifest variables Yik for four periods across time; Learningl = learning outcome 

for Time 1; Learning2 = learning outcome at Time 2; Learning3 = learning outcome at 

Time 3; learning4 = Learning outcome at Time 4. 
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Figure 16. Model 2 for Hypotheses 8a through 8c: Relationship between LTS model of 

goal orientation and learning. 

Note. T = trait, SR^ = state residual for four occasions across time, S* = state for four 

occasions across time, and three manifest variables Y,k for four occasions across time; 

Leamingl = learning outcome for Time 1; Learning2 = learning outcome at Time 2; 

Learning3 = learning outcome at Time 3; Learning4 = learning outcome at Time 4. 
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Figure 17. Model 3 for Hypotheses 8a through 8c: Relationship between LTS model of 

goal orientation and learning. 

Note. T = trait, O* = occasion for four periods across time, = uniqueness factor for 

three occasions, S* = state for four periods across time, and three manifest variables 

for four periods across time; Learning 1 = learning outcome for Time 1; Learning2 = 

learning outcome at Time 2; Learning3 = learning outcome at Time 3; learning4 = 

learning outcome at Time 4. 
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Hypotheses 9a through c were tested using three models nearly identical to those 

used to test Hypotheses 8a through c. The exception was the replacement of the four 

outcome variables, learning at Times 1 through 4, with a single variable, academic 

performance. Structural paths were added to the model, connecting the state factors with 

academic performance. Models 1, 2 and 3 are illustrated in Figures 18,19 and 20, 

respectively. 
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Figure 18. Model 1 for Hypotheses 9a through 9c: Relationship between latent state 

model of goal orientation and academic performance. 

Note. S* = state for four periods across time, = uniqueness factor for three state, and 

three manifest variables 7,* for four periods across time; AP = academic performance. 
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Figure 19. Model 2 for Hypotheses 9a through 9c: Relationship between LTS model of 

goal orientation and academic performance. 

Note. SR* = state residual for four occasions across time, S* = state for four occasions 

across time, and three manifest variables for four occasions across time; AP -

academic performance. 
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Figure 20. Model 3 for Hypotheses 9a through 9c: Relationship between LTS model of 

goal orientation and academic performance. 

Note. T = trait, O* = occasion for four periods across time, = uniqueness factor for 

three occasions, S* = state for four periods across time, and three manifest variables 

for four periods across time; AP = academic performance. 
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Model fit. For Hypotheses 8a through c and 9a through c, a set of alternate 

models tested using SEM with FIML estimation using the covariance matrix. Models 

were assessed for goodness of fit using the procedure listed for testing previous 

hypotheses. A good fitting model has a non-significant x goodness-of-fit test, a narrow 

RMSEA 90% confidence interval with a lower bound close to zero and upper bound < 

.08, CFI > .95, and TLI > .95). The selection of the best fitting model was based on 

whether a model included a statistically significant relationship with an achievement-

related performance outcome and the magnitude of the regression coefficients (/?) with 

that outcome. 
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CHAPTER III 

RESULTS 

PRELIMINARY ANALYSES 

Data Screening 

Prior to analysis, all data for goal orientation measures were examined for fit 

between their distributions and the assumptions of multivariate statistics following the 

procedures outlines by Tabachnick and Fidell (2001). None of the data deviated from 

normality nor met criteria indicating multicolinearity. General trait data contained no 

deviations from normality. No univariate or multivariate outliers were present. For all 

general trait scales the number of cases varied from 229 at Time 1 to 173 at Time 4. 

Several cases with extremely high or low z scores (+/- 3.29) on domain-specific 

goal orientation scales were found and identified as univariate outliers. One case was 

dropped from analyses of the learning scale at time period 1, six cases were dropped from 

the analyses of the performance-prove scale (one at Time 1, two at Time 2, two at Time 

3, and one at Time 4), and four cases were dropped from the analyses of the performance-

avoid scale (one at Time 1, two at Time 3, and one at Time 4). Three cases were 

identified through Mahalanobis distance as multivariate outliers. Scores on the variables 

causing the cases to be outliers were deleted. After all outliers were deleted, between 173 

and 228 cases were left for the four time periods for the learning scale, between 172 and 

228 cases remained for the four time periods for both the performance-prove and 

performance-avoid scales. 

Several cases with extremely low or high z-scores on domain-specific goal 

orientation scales were identified as univariate outliers. One case was dropped from 
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analyses of the learning scale at time period 4, three cases were dropped from the 

analyses of the performance-prove scale (one at time periods 1, 2, and 4), and two cases 

were dropped from the analyses of the performance-avoid scale (one at time periods 2 

and 3). After all outliers were deleted, between 172 (learning and performance-prove 

scales at Time 4) and 228 (learning and performance-avoid scales at Time 1) cases were 

left for the four time periods for the learning scale, between 172 and 227 cases remained 

for the four time periods for both the performance-prove scale, and 173 and 228 cases 

remained for the four time periods for the performance-avoid scale. 

CFA Results 

Results of the CFAs for all measures, including yl, df, RMSEA, CFI, and TLI, 

can be found in Appendices D through L. Three models were compared: 6-item, 5-item, 

and 4-item. For all measures, a 4-item version demonstrated the best fit across the four 

occasions of measurement. Based on the results of the CFAs, two items were cut from 

each scale to improve fit. Modification indices, typically used to identify items 

responsible for poor model fit, were not available. When using Amos, modification 

indices cannot be computed using a dataset with missing data. Instead, poor factor 

loadings and large error variances were used to identify items contributing to poor model 

fit. Item factor loadings for the nine 4-item goal orientation measures for Time 1, Time 

2, Time 3, and Time 4 are located in Appendices V through X. 

Because all scales were reduced to 4 items, the use of parcels in the measurement 

models used to test the hypotheses was omitted. Two 2-item parcels would have reduced 

the degrees of freedom and resulted in parametrically underidentified models making 

hypotheses testing impossible. As a solution, the measurement models used for 
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hypothesis testing were identified at the item level and did not include parcels. 

Fortunately, this did not impair the ability to achieve proper model solutions and the 

covariance matrix of items did not exceed the limits of Amos 17.0. 

Reliability Analysis 

Cronbach's coefficient alpha was computed for all scales at all periods of 

measurement using Enders' (2004) recommended ML procedure for computing 

reliability with missing data. Appendices Y, Z and AA contain scale reliabilities and 

95% confidence intervals (CI) for the general trait, domain-specific trait and state goal 

orientation scales, respectively. Reliability ranged from a low of 0.71 for the domain-

specific trait performance-avoid scale at Time 2 to a high of 0.89 for the general trait 

learning, performance-prove, and performance-avoid scales at Time land the domain-

specific trait learning scale at Time 1. 

ME/I Results 

Based on the tests of ME/I, most scales showed no evidence of beta or gamma 

change. For nearly all scales the A% tests were not statistically significant and ACFI 

values were less than 0.01. The sole exception was the scale for general trait learning 

goal orientation. The A%2 test of equality of factor variance-covariance matrices was 

significant, indicating that the learning scale displayed gamma change between occasions 

of measurement. However, the Ax2 test is an excessively stringent test of invariance 

(Cudeck & Browne, 1983). The ACFI test is a more reasonable option (Cheung & 

Resvold, 2002). The ACFI value for the test of equality of factor variance-covariance 

matrices was less than 0.01, indicating equivalence. According to this test of ME/I, the 

general trait learning goal orientation scale was not affected by gamma change. 
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Appendices AB through JJ contain the goodness-of-fit indices and details of the ME/I 

tests for all goal orientation scales. 

DESCRIPTIVE STATISTICS 

Demographics 

Of the 244 participants, 68.4% were female. Participant age ranged from 18 to 29 

years with a mean of 18.96 years and a SD of 1.79 years. By academic year, 59.4% of 

participants were first-year students, 24.6% second-year, 8.2% third-year, 4.9% fourth 

year, and 2.9% other. By academic major, 20.4% of the participants were psychology 

majors, 19.2% undecided, and other majors each comprised less than 10% of the sample. 

Other participant majors were drawn from all of the university colleges, including fine 

and liberal arts, business and public administration, education, engineering and 

technology, health sciences, and sciences. 

Study Variables 

The estimated means, standard deviations, and intercorrelations for demographic 

variables, goal orientation general trait, domain-specific trait, and state measures at Times 

1 through 4, learning outcomes at Times 1 through 4, and academic performance are in 

Appendix KK. Estimates were based on the implied covariance matrix using FIML 

estimation. 

RESULTS OF HYPOTHESES TESTS 

The y2 values from all models included in testing Hypotheses la through 3c, as 

well as most models used in testing the remained of the hypotheses, were significant, 

indicating a poor fitting model. When implementing a longitudinal design, one would 
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not expect the chi-square to be non-significant because of nonzero covariances among the 

error terms between items from different occasions of measurement. These covariances 

are explained by construct-irrelevant similarities in language among certain pairs of 

items. (Millsap, 2007; p. 879) As an alternative, Steiger (2007) suggests estimating the 

RMSEA 90% confidence interval as a test of not-close fit. This procedure was followed 

using the recommendations of MacCallum et al. (1996). 

General Trait Goal Orientation (Hypothesis la through 1c) 

Hypothesis la. It was hypothesized that a latent trait-state model would provide a 

better fit for general trait learning goal orientation than either a trait or state model. Seven 

models were tested. The goodness-of-fit indices for all seven models are displayed in 

Table 4. The solution for Model 7, the latent TSO model, was initially inadmissible due 

to a negative variance estimate (for the uniqueness factor associated with the occasion 

latent variable at Time 2), known as a Haywood case. This problem was remedied 

following the procedure recommended by Rindskopf (1984). A small starting value 

(0.08) was assigned to the uniqueness factor and the model was retested. The upper 

bounds of the RMSEA 90% CI values for Models 3 through 7 and CFI values for models 

4 through 7 met cut-off criteria indicating a good fit. 

The AIC, AICc and BIC values in Table 5 reveal that Model 7, the latent TSO 

model, provided the best fit. According to the model probabilities in Table 6, the latent 

TSO model had a probability of .66 of being the K-L best fitting model, given the 

candidate models and the data. Compared to the LTS-AR model, the model ranked as the 

next best fitting, the latent TSO model had an evidence ratio of 2.73 to one of being the 

best fitting model. Expressed as a normalized probability, the latent TSO model had a 
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.73 probability of being the K-L best fitting model compared to the LST-AR model. 

Further and as illustrated in Figure 21, except for the regression coefficients from 

occasion 1 to occasion 2 and from occasion 2 to occasion 3, all other coefficients were 

statistically significant. The coefficients for latent trait decreased over time while the 

state coefficients for the occasion factors increased. These findings thus support 

Hypothesis la. 

Table 4 

Goodness-of-Fit Indices of Models for General Trait Learning Goal Orientation (N = 

244) 

Model df X2 P RMSEA RMSEA 90% CI CFI TLI 

1. Trait 112 462.10 0.00 0.110 [0.102,0.123] 0.82 0.78 

2. State 109 561.70 0.00 0.130 [0.119, 0.140] 0.77 0.71 

3. State-AR 106 220.90 0.00 0.070 [0.054, 0.078] 0.94 0.93 

4. LTS 105 191.70 0.00 0.060 [0.044, 0.070] 0.96 0.94 

5. LTS-EC 108 206.20 0.00 0.060 [0.048, 0.073] 0.95 0.94 

6. LTS-AR 105 189.90 0.00 0.060 [0.044, 0.070] 0.96 0.94 

7. Latent TSO 106 190.97 0.00 0.057 [0.044, 0.070] 0.96 0.94 

Note. State-AR = state model with first-order autoregressive state factors, LTS = latent 

trait state model, LTS-EC = LTS model with equality constraints on latent trait factor 

loadings, LTS-AR = LTS model with first-order autoregressive latent state factors, Latent 

STO = latent state trait occasion model. 
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Table 5 

Model Comparison Criteria of Models for General Trait Learning Goal Orientation (N 

244) 

Model AIC AICc BIC 

1. Trait 542.118 558.276 557.614 

2. State 647.661 666.581 664.319 

3. State-AR 312.878 334.827 330.698 

4. LTS 285.699 308.719 303.906 

5. LTS-EC 294.216 314.115 311.261 

6. LTS-AR 283.903 306.923 302.110 

7. Latent TSO 282.967 304.916 300.787 

Note. Boldface indicates best fitting model for criterion. See note to Table 1. 
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Table 6 

Ranking, AICc, AICc Differences (At), and Probability (Wj) of Models for General Trait 

Learning Goal Orientation (N = 244) 

Model AICc A/ W; 

7. Latent TSO 304.916 0.000 0.655 

6. LTS-AR 306.923 2.007 0.240 

4. LTS 308.719 3.803 0.098 

5. LTS-EC 314.115 9.199 0.007 

3. State-AR 334.827 29.911 0.000 

1. Trait 558.276 253.360 0.000 

2. State 666.581 361.665 0.000 

Note. See note to Table 1. 
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Figure 21. Standardized coefficients for Model 7: Latent TSO model for general trait 

learning goal orientation. 

Note. T = trait, O* = occasion for four points in time, S* = state for four points in time, - uniqueness 

factor for three occasions, and four manifest variables Y,k for four points in time. n.s. = not significant. 

*p <.05. ***/><.001. 
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Hypothesis lb. It was hypothesized that a latent trait-state model would provide a 

better fit for general trait performance-prove goal orientation than either a trait or state 

model. Seven models were tested. The fit indices for all seven models are displayed in 

Table 7. RMSEA and CFI values for models 3 through 7 and TLI values for Models 3,4, 

6, and 7 indicate good fit. The AIC, AICc and BIC values in Table 8 indicate that Model 

7, the latent TSO model, provided the K-L best fit, given the set of models and the data. 

According to Table 9, the latent TSO model had a probability of .78 of being the 

K-L best fitting model, given the candidate models and the data. Compared to the state-

AR model, the model ranked as the next best fitting, the latent TSO model had an 

evidence ratio of 4.95 to one of being the best fitting model. Expressed as a normalized 

probability, the latent TSO model had a .83 probability of being the K-L best fitting 

model compared to the state-AR model. 

The regression coefficients for the best fitting model were similar to those found 

in the previous analysis. As illustrated in Figure 22, except for the regression coefficients 

from occasion 1 to occasion 2 and from occasion 2 to occasion 3, all other coefficients 

were statistically significant. The coefficients for latent trait decreased over time while 

the state coefficients for the occasion factors increased. These findings thus support 

Hypothesis lb. 
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Table 7 

Goodness-of-Fit Indices of the Models for General Trait Performance-Prove Goal 

Orientation (N = 244) 

Model df X2 P RMSEA RMSEA 90% CI CFI TLI 

1. Trait 112 345.90 0.00 0.090 [0.081,0.103] 0.90 0.88 

2. State 109 703.00 0.00 0.150 [0.138,0.158] 0.74 0.64 

3. State-AR 106 178.34 0.00 0.050 [0.039, 0.065] 0.97 0.96 

4. LTS 105 179.20 0.00 0.050 [0.040,0.066] 0.97 0.96 

5. LTS-EC 108 206.20 0.00 0.060 [0.048,0.073] 0.95 0.94 

6. LTS-AR 105 178.10 0.00 0.050 [0.039, 0.066] 0.97 0.96 

7. Latent TSO 105 172.07 0.00 0.050 [0.037,0.064] 0.97 0.96 

Note. See note to Table 1. 
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Table 8 

Model Comparison Criteria of Models for General Trait Performance-Prove Goal 

Orientation (N = 244) 

Model AIC AICc BIC 

1. Trait 425.915 442.073 441.411 

2. State 788.957 807.877 805.615 

3. State-AR 270.339 292.288 288.159 

4. LTS 273.222 296.242 291.429 

5. LTS-EC 294.216 314.115 311.261 

6. LTS-AR 272.068 295.088 290.275 

7. Latent TSO 266.070 289.090 284.277 

Note. Boldface indicates best fitting model for criterion. See note to Table 1. 
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Table 9 

Ranking, AICc, AICc Differences (&l), and Probability (w,) of Models for General Trait 

Performance-Prove Goal Orientation (N = 244) 

Model AICc A,- Wi 

7. Latent TSO 289.090 0.000 0.781 

3. State-AR 292.288 3.198 0.158 

6. LTS-AR 295.088 5.998 0.039 

4. LTS 296.242 7.152 0.022 

5. LTS-EC 314.115 25.025 0.000 

1. Trait 442.073 152.983 0.000 

2. State 807.877 518.787 0.000 

Note. See note to Table 1. 
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Figure 22. Standardized coefficients for Model 7: Latent TSO model for general trait 

performance-prove goal orientation. 

Note. T = trait, O* = occasion for four points in time, S* = state for four points in time, = 

uniqueness factor for three occasions, and four manifest variables Yik for four points in time. n.s. 

= not significant. 
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Hypothesis lc. It was hypothesized that a latent trait-state model would provide a 

better fit for general trait performance-avoid goal orientation than either a trait or state 

model. Seven models were tested. The fit indices for all seven models are displayed in 

Table 6. The initial solution for Model 7 was a Haywood case, inadmissible due to a 

negative variance estimate (for the uniqueness factor associated with the occasion latent 

variable at Time 2). Like the solution for Model 7 in Hypothesis lc, the problem was 

remedied following the procedure recommended by Rindskopf (1984). A small starting 

value (0.08) was assigned to the uniqueness factor and the model was retested. 

RMSEA values and RMSEA 90% CI values for models 4 through 7, CFI values 

for models 3 through 7 and TLI values for models 4, 6 and 7 met cut-off criteria 

indicating good fit. The AIC, AICc and BIC values in Table 11 indicate that Model 7, 

the latent TSO model, provided the K-L best fit, given the set of models and the data. 

According to the results in Table 12, the latent TSO model had a probability of .95 of 

being the K-L best fitting model, given the candidate models and the data. Compared to 

the LTS model, the model ranked as the next best fitting, the latent TSO model had an 

evidence ratio of 22.75 to one of being the best fitting model. Expressed as a normalized 

probability, the latent TSO model had a .96 probability of being the K-L best fitting 

model compared to the LTS model. 

The regression coefficients for the best fitting model were similar to those found 

in the previous analysis. As illustrated in Figure 23, except for the regression coefficients 

from occasion 2 to occasion 3, all other coefficients were statistically significant. The 

regression coefficient from occasion 1 to occasion 2 was negative and large {ft = -.95). 

The coefficients for latent trait decreased over time while the state coefficients for the 
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occasion factors increased. These findings thus support Hypothesis lc. 

Table 10 

Goodness-of-Fit Indices of the Models for General Trait Performance-Avoid Goal 

Orientation (N - 244) 

Model df X2 P RMSEA RMSEA 90% CI CFI TLI 

1. Trait 112 456.37 0.00 0.110 [0.101,0.122] 0.82 0.78 

2. State 109 533.80 0.00 0.130 [0.115,0.136] 0.78 0.72 

3. State-AR 106 198.15 0.00 0.060 [0.046, 0.072] 0.95 0.94 

4. LTS 105 176.50 0.00 0.050 [0.038, 0.065] 0.96 0.95 

5. LTS-EC 108 210.70 0.00 0.050 [0.049, 0.074] 0.95 0.93 

6. LTS-AR 105 179.90 0.00 0.050 [0.040, 0.067] 0.96 0.95 

7. Latent TSO 106 173.30 0.00 0.050 [0.039, 0.066] 0.97 0.96 

Note. See note to Table 1. 
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Table 11 

Model Comparison Criteria of Models for General Trait Performance-Avoid Goal 

Orientation (N = 244) 

Model A1C AICc BIC 

1. Trait 536.370 552.528 551.866 

2. State 619.799 638.719 636.457 

3. State-AR 290.145 312.094 307.965 

4. LTS 270.476 293.496 288.683 

5. LTS-EC 298.693 318.592 315.738 

6. LTS-AR 273.914 296.934 292.121 

7. Latent TSO 265.298 287.247 283.118 

Note. Boldface indicates best fitting model for criterion. See note to Table 1. 
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Table 12 

Ranking, AICc, AICc Differences (&.$, and Probability (w,) of Models for General Trait 

Performance-Avoid Goal Orientation (N = 244) 

Model AICc A/ Wj 

7. Latent TSO 287.247 0.000 0.951 

4. LTS 293.496 6.249 0.042 

6. LTS-AR 296.934 9.687 0.007 

3. State-AR 312.094 24.847 0.000 

5. LTS-EC 318.592 31.345 0.000 

1. Trait 552.528 265.281 0.000 

2. State 638.719 351.472 0.000 

Note. See note to Table 1. 
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*** 

Figure 23. Standardized coefficients for Model 7: Latent TSO model for general trait 

performance-avoid goal orientation. 

Note. T = trait, O* = occasion for four points in time, Sk = state for four points in time, = 

uniqueness factor for three occasions, and four manifest variables Yik for four points in time. n.s. 

= not significant. 

***p < .001. 
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Domain-Specific Goal Orientation (Hypothesis 2a through 2c) 

Hypothesis 2a. It was hypothesized that a latent trait-state model would provide a 

better fit for domain-specific trait learning goal orientation than either a trait or state 

model. Seven models were tested. The fit indices for all seven models are displayed in 

Table 13. RMSEA, RMSEA 90% CI, CFI and TLI values for models 3 through 7 met 

cut-off criteria indicating good fit. 

According to the AIC, AICc and BIC values in Table 14indicate that Model 7, the 

latent TSO model, was ranked as providing the best fit, given the candidate models and 

the data. However, values of Model 6, the LTS-AR model, and Model 7, the latent TSO 

model, were close. The AIC, AICc and BIC values for the two models were nearly equal. 

The AICc difference (A,) between the two models is .29 and can be found in Table 15. 

The two models provided a similar expected K-L distance from reality. As mentioned 

previously, according to information-theoretic statistics, a true model does not exist. 

Therefore several models can approximate domain-specific learning goal orientation 

equally well. Based on the results in Table 15, the LTS-AR and latent TSO models had a 

combined probability of .87 of providing the K-L best fit, given the candidate models and 

the data. Compared to all other models, they had a combined evidence ratio of 6.38 to 

one of providing the best fit. 

As illustrated in Figures 24 and 25, except for the regression coefficients from 

occasion 1 to occasion 2 and from occasion 2 to occasion 3, all other coefficients were 

statistically significant. The coefficients for latent trait decreased over time while the 

state coefficients for the occasion factors increased. These findings thus support 

Hypothesis 2a. 
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Table 13 

Goodness-of-Fit Indices of the Models for Domain-Specific Trait Learning Goal 

Orientation (N - 244) 

Model df X2 P RMSEA RMSEA 90% CI CFI TLI 

1. Trait 112 496.69 0.00 0.120 [0.107, 0.128] 0.81 0.77 

2. State 109 556.51 0.00 0.130 [0.118, 0.139] 0.78 0.72 

3. State-AR 106 181.52 0.00 0.050 [0.040,0.067] 0.96 0.95 

4. LTS 105 158.40 0.00 0.050 [0.030, 0.059] 0.97 0.97 

5. LTS-EC 108 168.50 0.00 0.050 [0.033, 0.061] 0.97 0.96 

6. LTS-AR 105 155.30 0.00 0.040 [0.028, 0.058] 0.98 0.97 

7. Latent TSO 105 155.00 0.00 0.040 [0.028,0.058] 0.98 0.97 

Note. See note to Table 1. 
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Table 14 

Model Comparison Criteria of Models for Domain-Specific Trait Learning Goal 

Orientation (N = 244) 

Model AIC AICc BIC 

1. Trait 576.685 592.843 592.181 

2. State 642.508 661.428 659.166 

3. State-AR 273.523 295.472 291.343 

4. LTS 252.401 275.421 270.608 

5. LTS-EC 256.530 276.429 273.575 

6. LTS-AR 249.287 272.307 267.494 

7. Latent TSO 248.997 272.017 267.204 

Note. Boldface indicates best fitting model for criterion. See note to Table 1. 
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Table 15 

Ranking, AICc, AICc Differences (AJ, and Probability (wi) of Models for Domain-

Specific Trait Learning Goal Orientation (N = 244) 

Model AICc A, Wi 

7. Latent TSO 272.017 0.000 0.464 

6. LTS-AR 272.307 0.290 0.401 

4. LTS 275.421 3.404 0.084 

5. LTS-EC 276.429 4.412 0.051 

3. State-AR 295.472 23.455 0.000 

1. Trait 592.843 320.826 0.000 

2. State 661.428 389.411 0.000 

Note. See note to Table 1. 
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Figure 24. Standardized coefficients for Model 6: LTS-AR model for domain-specific 

trait learning goal orientation. 

Note. T = trait, SR4 = state residual for four points in time, Sk - state for four points in time, and 

four manifest variables Yik for four points in time. n.s. = not significant. 

*p < .05. ***p < .001. 
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Figure 25. Standardized coefficients for Model 7: Latent TSO model for domain-specific 

trait learning goal orientation. 

Note. T = trait, O* = occasion for four points in time, Sk = state for four points in time, = uniqueness 

factor for three occasions, and four manifest variables Yik for four points in time. n.s. = not significant. 

*p <.05. ***p< .001. 
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Hypothesis 2b. It was hypothesized that a latent trait-state model would provide a 

better fit for domain-specific trait performance-prove goal orientation than either a trait or 

state model. Seven models were tested. The fit indices for all seven models are displayed 

in Table 16. RMSEA, RMSEA 90% CI, CFI and TLI values for models 3 through 7 

indicate good fit. 

The AIC, AICc and BIC values in Table 17 suggest that Model 3, the state-AR 

model, provided the best fit. According to Table 18, the state-AR model had a 

probability of .65 of being the K-L best fitting model, given the candidate models and the 

data. However two other models had meaningful support: the LTS-AR and latent TSO 

models. The two models are reasonably plausible alternatives. Compared to the two, 

the state-AR model had an evidence ratio of 1.9 to one of being the best fitting model. 

Expressed as a normalized probability, the state-AR model had a .66 probability of being 

the K-L best fitting model when compared to the other two and given the data. 

While two LTS models were plausible, the model with the strongest support was 

not one of them; it was a state model. These findings do not support Hypothesis 2b. 

As illustrated in Figure 26, the regression weights between the occasions of 

measurement were significant and grew in strength over time. 
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Table 16 

Goodness-of-Fit Indices of the Models for Domain-Specific Trait Performance-Prove 

Goal Orientation (N = 244) 

Model df X2 P RMSEA RMSEA 90% CI CFI TLI 

1. Trait 112 363.53 0.00 0.100 [0.084, 0.106] 0.86 0.83 

2. State 109 571.60 0.00 0.130 [0.120, 0.141] 0.74 0.68 

3. State-AR 106 149.12 0.00 0.040 [0.024,0.055] 0.98 0.97 

4. LTS 105 157.70 0.00 0.050 [0.030,0.059] 0.96 0.96 

5. LTS-EC 108 184.70 0.00 0.050 [0.040, 0.066] 0.95 0.95 

6. LTS-AR 105 148.70 0.00 0.040 [0.024,0.055] 0.96 0.97 

7. Latent TSO 105 148.75 0.00 0.040 [0.024, 0.055] 0.96 0.97 

Note. See note to Table 1. 
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Table 17 

Model Comparison Criteria of Models for Domain-Specific Trait Performance-Prove 

Goal Orientation (N = 244) 

Model AIC AICc BIC 

1. Trait 443.530 459.688 459.026 

2. State 657.596 676.516 674.254 

3. State-AR 241.123 263.072 258.943 

4. LTS 251.713 274.733 269.920 

5. LTS-EC 272.663 292.562 289.708 

6. LTS-AR 242.695 265.715 260.902 

7. Latent TSO 242.754 265.774 260.961 

Note. Boldface indicates best fitting model for criterion. See note to Table I. 
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Table 18 

Ranking, AICc, AICc Differences (AJ, and Probability (wj) of Models for Domain-

Specific Trait Performance-Prove Goal Orientation (N = 244) 

Model AICc A, Wi 

3. State-AR 263.072 0.000 0.654 

6. LTS-AR 265.715 2.643 0.174 

7. Latent TSO 265.774 2.702 0.169 

4. LTS 274.733 11.661 0.002 

5. LTS-EC 292.562 29.490 0.000 

1. Trait 459.688 196.616 0.000 

2. State 676.516 413.444 0.000 

Note. See note to Table 1. 
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Figure 26. Standardized coefficients for Model 3: State-AR model for the domain-

specific trait performance-prove goal orientation. 

Note. S* = state for four points in time, ^ = uniqueness factor for three occasions, and 

four manifest variables Y-,k for four points in time. 

***p < .001. 
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Hypothesis 2c. It was hypothesized that a latent trait-state model would provide a 

better fit for domain-specific trait performance-avoid goal orientation than either a trait or 

state model. Seven models were tested. The fit indices for all seven models are displayed 

in Table 9. RMSEA and RMSEA 90% CI values for models 3 through 7, CFI values for 

models 3 through 7, and TLI values for models 4, 6 and 7 met cut-off criteria indicating 

good fit. 

The AIC, AICc and BIC values in Table 19indicate Model 7, the latent TSO 

model, provided the best fit. The latent TSO model had a probability of .72 of being the 

K-L best fitting model, given the candidate models and the data. Compared to the LTS 

model, the model ranked as the next best fitting, the latent TSO model had an evidence 

ratio of 3.94 to one of being the best fitting model. As a normalized probability, the 

latent TSO model had a .80 probability of being the K-L best fitting model compared to 

the LST model. As illustrated in Figure 27, the regression coefficients from occasion 1 to 

occasion 2 and from occasion2 to occasion 3 were not statistically significant. The 

coefficients for latent trait increased at Time 2 while the coefficients for occasion 

decreased. At Time 3 and 4, the coefficients for the latent trait decreased while the 

coefficients for occasion increased. These findings thus support Hypothesis 2c. 
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Table 19 

Goodness-of-Fit Indices of the Models for Domain-Specific Trait Performance-Avoid 

Goal Orientation (N = 244) 

Model # X2 P RMSEA RMSEA 90% CI CFI TLI 

1. Trait 112 446.07 0.00 0.110 [0.099,0.120] 0.80 0.76 

2. State 109 465.13 0.00 0.120 [0.104, 0.125] 0.79 0.74 

3. State-AR 106 187.55 0.00 0.060 [0.042,0.068] 0.95 0.94 

4. LTS 105 172.70 0.00 0.050 [0.037,0.064] 0.96 0.95 

5. LTS-EC 108 191.50 0.00 0.060 [0.043,0.068] 0.95 0.94 

6. LTS-AR 105 173.40 0.00 0.050 [0.037,0.065] 0.96 0.95 

7. Latent TSO 105 169.90 0.00 0.050 [0.036,0.063] 0.96 0.95 

Note. See note to Table 1. 
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Table 20 

Model Comparison Criteria of Models for Domain-Specific Trait Performance-Avoid 

Goal Orientation (N = 244) 

Model AIC AICc BIC 

1. Trait 526.067 542.225 541.563 

2. State 551.129 570.049 567.787 

3. State-AR 279.545 301.494 297.365 

4. LTS 266.684 289.704 284.891 

5. LTS-EC 279.469 299.368 296.514 

6. LTS-AR 267.909 290.929 286.116 

7. Latent TSO 263.940 286.960 282.147 

Note. Boldface indicates best fitting model for criterion. See note to Table 1. 
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Table 21 

Ranking, AICc, AICc Differences (Af and Probability (wj of Models for Domain-

Specific Trait Performance-Avoid Goal Orientation (N = 244) 

Model AICc A/ w, 

7. Latent TSO 286.960 0.000 0.718 

4. LTS 289.704 2.744 0.182 

6. LTS-AR 290.929 3.969 0.099 

5. LTS-EC 299.368 12.408 0.001 

3. State-AR 301.494 14.534 0.001 

1. Trait 542.225 255.265 0.000 

2. State 570.049 283.089 0.000 

Note. See note to Table 1. 
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Figure 27. Standardized coefficients for Model 7: Latent TSO model for domain-specific 

trait performance-avoid goal orientation. 

Note. T = trait, Ok = occasion for four points in time, S* = state for four points in time, = 

uniqueness factor for three occasions, and four manifest variables Yik for four points in time. n.s. 

= not significant. 

.001. 
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I l l  

State Goal Orientation (Hypothesis 3a through 3c) 

Hypothesis 3a. It was hypothesized that a latent trait-state model would provide a 

better fit for state learning goal orientation than either a trait or state model. Seven 

models were tested. The fit indices for all seven models are displayed in Table 22. 

RMSEA, RMSEA 90% CI, and TLI values for models 4 through 7 and CFI values for 

models 3 through 7 met cut-off criteria indicating good fit. 

The AIC, AICc and BIC values in Table 23 indicate that Model 7, the latent TSO 

model, provided the best fit. According to the model probabilities in Table 23, the latent 

TSO model had a probability of .81 of being the K-L best fitting model, given the 

candidate models and the data. According to the model probabilities in Table 23, the 

latent TSO model had a probability of .81 of being the K-L best fitting model, given the 

candidate models and the data. Compared to the LTS-AR model, the model ranked as the 

next best fitting, the latent TSO model had an evidence ratio of 5.97 to one of being the 

best fitting model. Expressed as a normalized probability, the latent TSO model had a 

.86 probability of being the K-L best fitting model compared to the LST-AR model. As 

illustrated in Figure 28, regression weights were similar to other goal orientation 

dimensions where the LTS model with regressed occasions provided the best fit. The 

regression paths from occasion 1 to occasion 2 and from occasion2 to occasion 3 were 

not statistically significant. The factor loadings for latent trait decreased over time while 

the loadings for occasion increased. These findings thus support Hypothesis 3a. 
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Table 22 

Goodness-of-Fit Indices of the Models for State Learning Goal Orientation (N = 244) 

Model df X2 P RMSEA RMSEA 90% CI CFI TLI 

1. Trait 112 560.97 0.00 0.127 [0.117, 0.137] 0.78 0.74 

2. State 109 559.43 0.00 0.129 [0.118, 0.139] 0.78 0.73 

3. State-AR 106 196.62 0.00 0.060 [0.046, 0.071] 0.96 0.94 

4. LTS 105 166.00 0.00 0.050 [0.034, 0.062] 0.97 0.96 

5. LTS-EC 108 183.00 0.00 0.050 [0.039,0.066] 0.96 0.95 

6. LTS-AR 105 167.90 0.00 0.050 [0.035,0.063] 0.97 0.96 

7. Latent TSO 105 162.47 0.00 0.047 [0.032,0.061] 0.97 0.96 

Note. See note to Table 1. 
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Table 23 

Model Comparison Criteria of Models for State Learning Goal Orientation (N = 244) 

Model AIC AICc BIC 

1. Trait 640.970 657.128 656.466 

2. State 645.429 664.349 662.087 

3. State-AR 288.620 310.569 306.440 

4. LTS 260.039 283.059 278.246 

5. LTS-EC 271.200 291.099 288.245 

6. LTS-AR 261.974 284.994 280.181 

7. Latent TSO 256.467 279.487 274.674 

Note. Boldface indicates best fitting model for criterion. See note to Table 1. 
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Table 24 

Ranking, AICc, AICc Differences (Aj), and Probability (w,) of Models for State Learning 

Goal Orientation (N = 244) 

Model AICc A,- Wi 

7. Latent TSO 279.487 0.000 0.810 

4. LTS 283.059 3.572 0.136 

6. LTS-AR 284.994 5.507 0.052 

5. LTS-EC 291.099 11.612 0.002 

3. State-AR 310.569 31.082 0.000 

1. Trait 657.128 377.641 0.000 

2. State 664.349 384.862 0.000 

Note. See note to Table 1. 
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Figure 28. Standardized coefficients for Model 7: Latent TSO model for state learning 

goal orientation. 

Note. T = trait, O* = occasion for four points in time, S* = state for four points in time, Q = 

uniqueness factor for three occasions, and four manifest variables Ylk for four points in time. n.s. 

= not significant. 

***p< .001. 
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Hypothesis 3b. It was hypothesized that a latent trait-state model would provide a 

better fit for state performance-prove goal orientation than either a trait or state model. 

Seven models were tested. The fit indices for all seven models are displayed in Table 25. 

RMSEA and RMSEA 90% CI values for models 4 through 7 and CFI and TLI values for 

models 3 through 7 indicate good fit. 

The AIC, AICc and BIC values in Table 5 reveal that Model 26, the LTS-AR 

model, and Model 7, the latent TSO model, provided the best fit. According to the model 

probabilities in Table 27, the two models had a combined probability of .80 of being the 

K-L best fitting model, given the candidate models and the data. Compared to all the 

other models, the combination of the LTS-AR and latent TSO models had an evidence 

ratio of 4.31 to one of being the best fitting model. Expressed as a normalized 

probability, the models had a .81 probability of being the K-L best fitting compared to the 

LST-AR model. 

Model 6 is depicted in Figure 29 while Model 7 is illustrated in Figure 30. The 

two models differed in three ways. First, in Model 6, the coefficient between Time 1 and 

Time 2 was statistically significant; in Model 7, however, it was not significant. Second, 

the coefficients for latent traits were larger in Model 7. Lastly, Model 7 provides a means 

by which to examine the influence of the occasion factor on the associated state, e.g., 

regression weights. While a single best fitting model was not identified given the data, 

the findings support Hypothesis 3b. 
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Table 25 

Goodness-of-Fit Indices of the Models for State Performance-Prove Goal Orientation 

(N = 244) 

Model df X2 P RMSEA RMSEA 90% CI CFI TLI 

1. Trait 112 427.43 0.00 0.110 [0.096, 0.117] 0.84 0.81 

2. State 109 611.33 0.00 0.140 [0.126, 0.147] 0.75 0.69 

3. State-AR 106 189.75 0.00 0.060 [0.043, 0.069] 0.96 0.95 

4. LTS 105 164.60 0.00 0.050 [0.033,0.061] 0.97 0.96 

5. LTS-EC 108 176.40 0.00 0.050 [0.037,0.064] 0.97 0.96 

6. LTS-AR 105 162.40 0.00 0.050 [0.032, 0.061] 0.97 0.96 

7. Latent TSO 105 162.70 0.00 0.050 [0.032, 0.061] 0.97 0.96 

Note. See note to Table 1. 
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Table 26 

Model Comparison Criteria of Models for State Performance-Prove Goal Orientation (N 

= 244) 

Model AIC AICc BIC 

1. Trait 507.434 523.592 522.930 

2. State 697.331 716.251 713.989 

3. State-AR 281.748 303.697 299.568 

4. LTS 258.554 281.574 276.761 

5. LTS-EC 264.377 284.276 281.422 

6. LTS-AR 256.446 279.466 274.653 

7. Latent TSO 256.673 279.693 274.880 

Note. Boldface indicates best fitting model for criterion. See note to Table 1. 
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Table 27 

Ranking, AICc, AICc Differences (&i), and Probability (wj of Models for State 

Performance-Prove Goal Orientation (N = 244) 

Model AICc A/ Wi 

6. LTS-AR 279.466 0.000 0.429 

7. Latent TSO 279.693 0.227 0.383 

4. LTS 281.574 2.108 0.149 

5. LTS-EC 284.276 4.810 0.039 

3. State-AR 303.697 24.231 0.000 

1. Trait 523.592 244.126 0.000 

2. State 716.251 436.785 0.000 

Note. See note to Table 1. 
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Figure 29. Standardized coefficients for Model 6: LTS-AR model for state performance-

prove goal orientation measure. 

Note. T = trait, O* = occasion for four points in time, Sk = state for four points in time, ^ = 

uniqueness factor for three occasions, and four manifest variables Yik for four points in time. n.s. 

= not significant. 

***p < .001. 
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Figure 30. Standardized coefficients for Model 7: Latent TSO model for state 

performance-prove goal orientation. 

Note. T = trait, O* = occasion for four points in time, St = state for four points in time, = 

uniqueness factor for three occasions, and four manifest variables Yik for four points in time. n.s. 

= not significant. 

*p <.05. ***p< .001. 
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Hypothesis 3c. It was hypothesized that a latent trait-state model would provide a 

better fit for state performance-avoid goal orientation than either a trait or state model. 

Seven models were tested. The fit indices for all seven models are displayed in Table 28. 

RMSEA, RMSEA 90% CI and CFI values for models 3 through 7 and the TLI 

value for model 7 met cut-off criteria indicating good fit. The AIC, AICc and BIC values 

in Table 29 indicate that Model 7, the latent TSO model, provided the best fit. The model 

probability for the latent TSO model was 1.00 and is located in Table 30. The evidence 

ratio for the latent TSO model to be the K-L best fitting model versus all the other 

candidate models is 4984.65 to one. As illustrated in Figure 31, regression weights were 

similar to TSO models of other goal orientation dimensions. The regression paths from 

occasion 1 to occasion 2 and from occasion2 to occasion 3 were not statistically 

significant. The factor loadings for latent trait decreased over time while the loadings for 

occasion increased. These findings thus support Hypothesis 3c. 
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Table 28 

Goodness-of-Fit Indices of the Models for State Performance-Avoid Goal Orientation 

(N = 244) 

Model df X2 P RMSEA RMSEA 90% CI CFI TLI 

1. Trait 112 484.26 0.00 0.120 [0.105,0.126] •0.79 0.75 

2. State 109 522.13 0.00 0.120 [0.113,0.134] 0.77 0.71 

3. State-AR 106 199.18 0.00 0.060 [0.047, 0.072] 0.95 0.93 

4. LTS 105 194.70 0.00 0.060 [0.046,0.071] 0.95 0.94 

5. LTS-EC 108 210.50 0.00 0.060 [0.049,0.074] 0.94 0.93 

6. LTS-AR 105 192.70 0.00 0.060 [0.045,0.071] 0.95 0.94 

7. Latent TSO 105 174.13 0.00 0.051 [0.037,0.065] 0.97 0.96 

Note. See note to Table 1. 
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Table 29 

Model Comparison Criteria of Models for State Performance-Avoid Goal Orientation (N 

= 244) 

Model AIC AICc BIC 

1. Trait 564.255 580.413 579.751 

2. State 608.129 627.049 624.787 

3. State-AR 291.184 313.133 309.004 

4. LTS 286.690 309.710 304.897 

5. LTS-EC 296.463 316.362 313.508 

6. LTS-AR 284.707 307.727 302.914 

7. Latent TSO 268.127 291.147 286.334 

Note. Boldface indicates best fitting model for criterion. See note to Table 1. 
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Table 30 

Ranking, AICc, AICc Differences (Aj) ,  and Probability (wj of Models for State 

Performance-Avoid Goal Orientation (N = 244) 

Model AICc A, Wi 

7. Latent TSO 291.147 0.000 1.000 

6. LTS-AR 307.727 16.580 0.000 

4. LTS 309.710 18.563 0.000 

3. State-AR 313.133 21.986 0.000 

5. LTS-EC 316.362 25.215 0.000 

1. Trait 580.413 289.266 0.000 

2. State 627.049 335.902 0.000 

Note. See note to Table 1. 
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Figure 31. Standardized coefficients for Model 7: Latent TSO model for state 

performance-prove goal orientation. 

Note. T = trait, O* = occasion for four points in time, S* = state for four points in time, ^ = 

uniqueness factor for three occasions, and four manifest variables Yik for four points in time. n.s. 

= not significant. 

***p < .001. 
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Procedure for Testing Hypotheses 4a through 9c 

To review, the best fitting model for testing Hypotheses 4a through 9c was 

selected using several criteria. The first criterion was identifying a single model that met 

or exceeded RMSEA, TLI, and CFI benchmarks while the alternative models fail to meet 

the benchmarks. Thus a model was identified as the best fitting when it met or exceeded 

goodness-of-fit indices cut-offs for good fit (RMSEA < 0.05, CFI > 0.95, and TLI > 0.95) 

and other models failed to meet the benchmark cut-offs. The second criterion for 

selecting the best fit was how well the model replicated or clarified the predictive 

relationship with learning and academic performance as noted in the Payne et al (2007) 

meta-analysis. 

General Trait Goal Orientation and Learning in an Academic Setting (Hypothesis 4a 

through 4c) 

Hypothesis 4a. It was hypothesized that a latent trait-state model would provide a 

better fit than a trait model when examining the relationship between general trait 

learning goal orientation and learning in an academic setting. Three models were tested; 

the fit indices for each of these models are displayed in Table 31. 

Based on the RMSEA, CFI, and TLI benchmarks, Model 1, the latent trait model, 

provided the best fit. Model lalso detected a predictive relationship with learning 

outcome at Time 4. Model 2, the LTS model, did not meet the RMSEA and TLI cut-off 

values while Model 3, the latent TSO model, did not meet the TLI cut-off. Thus, these 

findings do not support Hypothesis 4a. 
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Table 31 

Goodness-of-Fit Indices of the Models for General Trait Learning Goal Orientation 

Predicting Learning (N = 244) 

Model df X2 P RMSEA 

RMSEA 

90% CI CFI TLI 

1. Latent Trait 14 19.83 0.14 0.041 [0.000,0.079] 0.98 0.95 

Learning Time 1 0.05 

Learning Time 2 0.07 

Learning Time 3 0.07 

Learning Time 4 0.15* 

2. LTS 168 276.5 0.00 0.051 [0.040, 0.061] 0.95 0.93 

Learning Time 1 0.06 

Learning Time 2 0.12 

Learning Time 3 0.06 

Learning Time 4 0.14* 

3. Latent TSO 166 263.03 0.00 0.048 [0.037, 0.059] 0.95 0.94 

Learning Time 1 0.04 

Learning Time 2 0.1 

Learning Time 3 0.07 

Learning Time 4 0.14 

Note. RMSEA = root mean square error of approximation; RMSEA 90% CI = root mean 

square error of approximation 90% confidence interval; CFI = comparative fit index; TLI 

= Tucker-Lewis index. 

*p < .05. 
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Hypothesis 4b. It was hypothesized that a latent trait-state model would provide a 

better fit than a trait model when examining the relationship between general trait 

performance-prove goal orientation and learning in an academic setting. Three models 

were tested; the fit indices for each of these models are displayed in Table 32. 

While the values for Model 1, the latent trait model, fit indices indicated a perfect 

fit, Models 2 and 3, the LTS and LTS-AR models respectively, met the benchmark cut

offs for good fit. None of the models, however, detected a relationship between 

performance-prove goal orientation and the learning outcome. Thus, the findings were 

inconclusive and did not support Hypothesis 4b. 
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Table 32 

Goodness-of-Fit Indices of the Models for General Trait Performance-Prove Goal 

Orientation Predicting Learning (N = 244) 

Model df X2 P RMSEA 

RMSEA 

90% CI CFI TLI P 

1. Latent Trait 14 13.04 0.52 0.00 [0.000, 0.058] 1.00 1.01 

Learning Time 1 0.03 

Learning Time 2 -0.05 

Learning Time 3 0.01 

Learning Time 4 -0.02 

2. LTS 168 262.34 0.00 0.047 [0.036, 0.058] 0.96 0.95 

Learning Time 1 0.04 

Learning Time 2 0.04 

Learning Time 3 -0.04 

Learning Time 4 0.01 

3. Latent TSO 165 248.85 0.00 0.045 [0.033, 0.056] 0.96 0.95 

Learning Time 1 0.04 

Learning Time 2 0.02 

Learning Time 3 -0.03 

Learning Time 4 -0.01 

Note. RMSEA = root mean square error of approximation; RMSEA 90% CI = root mean 

square error of approximation 90% confidence interval; CFI = comparative fit index; TLI 

= Tucker-Lewis index. 

*p < .05. 
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Hypothesis 4c. It was hypothesized that a latent trait-state model would provide a 

better fit than a trait model when examining the relationship between general trait 

performance-avoid goal orientation and learning in an academic setting. Three models 

were tested; the fit indices for each of these models are displayed in Table 33. 

Model 1, the latent trait model, fit indices indicated perfect fit. The relationship 

between the latent trait and learning was significant at Time 1. Model 3, the latent TSO 

model, met benchmark criteria. The significant relationship between the latent trait and 

learning at Time 4, however, was positive and contrary to what was reported by Payne et 

al. (2007): sample-weighted mean r - -.13 and p = -.17. These findings thus do not 

support Hypothesis 4c. 
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Table 33 

Goodness-of-Fit Indices of the Models for General Trait Performance-Avoid Goal 

Orientation Predicting Learning (N = 244) 

Model df X2 P RMSEA 

RMSEA 

90% CI CFI TLI P 

1. Latent Trait 14 12.39 0.58 0.00 [0.000,0.055] 1.00 1.01 

Learning Time 1 -0.18* 

Learning Time 2 0.02 

Learning Time 3 -0.06 

Learning Time 4 0.14 

2. LTS 168 279.48 0.00 0.052 [0.041,0.062] 0.94 0.93 

Learning Time 1 -0.05 

Learning Time 2 0.03 

Learning Time 3 -0.02 

Learning Time 4 0.14 

3. Latent TSO 166 239.74 0.00 0.042 [0.030,0.054] 0.96 0.95 

Learning Time 1 -0.06 

Learning Time 2 0.04 

Learning Time 3 -0.02 

Learning Time 4 0.17* 

Note. RMSEA = root mean square error of approximation; RMSEA 90% CI = root mean 

square error of approximation 90% confidence interval; CFI = comparative fit index; TLI 

= Tucker-Lewis index. 
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General Trait Goal Orientation and Academic Performance (Hypothesis 5a through 5c) 

Hypothesis 5a. It was hypothesized that a latent trait-state model would provide a 

better fit than a trait model for explaining the relationship between general trait learning 

goal orientation and academic performance. Three models were tested; the fit indices for 

these models are presented in Table 34. 

All the models met the RMSEA criterion for reasonable fit and the CFI criterion 

for good fit. None of the models, however, met the benchmark for the TLI index. The 

relationship between the latent trait and academic performance was statistically 

significant in both Model 2, the LTS model, and Model 3, the latent TSO model. 

Unfortunately a clear choice of best model was not available as both models fit nearly as 

well. These findings do not support Hypothesis 5a. 
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Table 34 

Goodness-of-Fit Indices of the Models for General Trait Learning Goal Orientation 

Predicting Academic Performance (N = 244) 

RMSEA 

Model df yl p RMSEA 90% CI CFI TLI p 

1. Latent Trait 5 935 0J 0.059 [0.000,0.117] 098 094 

AP 0.12 

2. LTS 123 224.76 0.00 0.058 [0.046,0.069] 0.95 0.94 

AP 0.16* 

3. Latent TSO 121 209.8 0.00 0.054 [0.042,0.066] 0.96 0.94 

AP 0.15* 

Note. RMSEA = root mean square error of approximation; RMSEA 90% CI = root mean 

square error of approximation 90% confidence interval; CFI = comparative fit index; TLI 

= Tucker-Lewis index; AP = academic performance. 

*p < .05. 

Hypothesis 5b. It was hypothesized that a latent trait-state model would provide a 

better fit than a trait model for explaining the relationship between general trait 

performance-prove goal orientation and academic performance. Three models were 

tested; the fit indices for each of the models are summarized in Table 35. 

Although all models had good model fit, the relationship between latent trait and 

academic performance in all three models was not statistically significant. Thus, the 

findings were inconclusive and did not support Hypothesis 5b. 
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Table 35 

Goodness-of-Fit Indices of the Models for General Trait Performance-Prove Goal 

Orientation Predicting Academic Performance (N = 244) 

RMSEA 

Model df yl p RMSEA 90% CI CFI TLI ft 

1. Latent Trait 5 SU3 0.149 005 [0.000,0.110] (X99 097 

AP -0.08 

2. LTS 123 208.78 0.00 0.053 [0.040,0.065] 0.96 0.95 

AP -0.05 

3. Latent TSO 121 195.68 0.00 0.05 [0.037,0.062] 0.97 0.96 

AP -0.06 

Note. RMSEA = root mean square error of approximation; RMSEA 90% CI = root mean 

square error of approximation 90% confidence interval; CFI = comparative fit index; TLI 

= Tucker-Lewis index; AP = academic performance. 

Hypothesis 5c. It was hypothesized that a latent trait-state model would provide a 

better fit than a trait model for explaining the relationship between general trait 

performance-avoid goal orientation and academic performance. Three models were 

tested; the fit indices for the three models are presented in Table 36. 

The findings in the table reveal that Model 3 met the RMSEA benchmark for 

close fit; it also met the TLI benchmark for good fit. Lastly, the relationship between 

latent trait and academic performance was statistically significant however in the 

opposite direction of that in the Payne et al. (2007) meta-analysis. T these findings do 

not support Hypothesis 5c. 
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Table 36 

Goodness-of-Fit Indices of the Models for General Trait Performance-Avoid Goal 

Orientation Predicting Academic Performance (N = 244) 

RMSEA 

Model df %1 P RMSEA 90% CI CFI TLI 

1. Latent Trait 5 102 007 0065 [0.000,0.122] 098 094 

AP 0.17* 

2. LTS 123 234.38 0.00 0.06 [0.048,0.072] 0.94 0.93 

AP 0.14 

3. Latent TSO 121 195.32 0.00 0.05 [0.036,0.062] 0.96 0.95 

AP 0.17* 

Note. RMSEA = root mean square error of approximation; RMSEA 90% CI = root mean 

square error of approximation 90% confidence interval; CFI = comparative fit index; TLI 

= Tucker-Lewis index. 

*p < .05. 

Domain-Specific Trait Goal Orientation and Learning in an Academic Setting 

(Hypothesis 6a through 6c) 

Hypothesis 6a. It was hypothesized that a latent trait-state model would provide a 

better fit than a trait model for explaining the relationship between domain-specific trait 

learning goal orientation and academic performance. Three models were tested; the fit 

indices for these models are summarized in Table 37. 

The findings in the table reveal that Model 2, the LTS model, and Model 3, the 

latent TSO model, met the benchmarks for RMSEA, TLI, and CFI. The relationship 
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between latent trait and learning at Time 4 was statistically significant for the LTS model 

but not the other two models. When testing Hypothesis 6a, the LTS model detected a 

relationship between learning goal orientation and learning in an academic setting at 

Time 4 (/?= . 14, p < .05). The Time 4 /? estimate for the trait model was not significant 

(/?= .10,/? = .18). The /? estimates for the outcome measure at Times 1 through 3 were 

not significant for either model. 

While the LTS model was superior to the trait model in this study, it did not 

improve the relationship between trait learning goal orientation and learning in an 

academic setting beyond that reported by Payne et al. (2007). The Payne et al. meta

analysis reported sample-weighted mean r = . 12 and p = . 16. These findings do not 

indicate support Hypothesis 6a. 
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Table 37 

Goodness-of-Fit Indices of the Models for Domain-Specific Trait Learning Goal 

Orientation Predicting Learning (N = 244) 

Model df X2 P 

RMSEA 

RMSEA 90% CI CFI TLI P 

1. Latent Trait 14 29.7 0.01 0.067 [0.033,0.101] 0.96 0.89 

Learning Time 1 0.10 

Learning Time 2 0.06 

Learning Time 3 0.03 

Learning Time 4 0.10 

2. LTS 168 239.36 0.00 0.041 [0.029,0.053] 0.97 0.96 

Learning Time 1 0.06 

Learning Time 2 0.11 

Learning Time 3 0.06 

Learning Time 4 0.14* 

3. Latent TSO 165 227.06 0.00 0.039 [0.025,0.051] 0.97 0.96 

Learning Time I 0.05 

Learning Time 2 0.10 

Learning Time 3 0.05 

Learning Time 4 0.13 

Note. RMSEA = root mean square error of approximation; RMSEA 90% CI = root mean 

square error of approximation 90% confidence interval; CFI = comparative fit index; TLI 

= Tucker-Lewis index. 

*p < .05. 
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Hypothesis 6b. It was hypothesized that a latent trait-state model would provide a 

better fit than a trait model for explaining the relationship between domain-specific trait 

performance-prove goal orientation and learning in an academic setting. Three models 

were tested; the fit indices for the models are displayed in Table 38. 

All three models met the cut-off value for CFI. Model 2, the LTS model, and 

Model 3, the latent TSO model, met the fit benchmark for an RMSEA close fit while 

Model 1, the trait model, did not. Only the latent TSO model met the cut-off for TLI. 

Thus, Model 3 exhibited the best fit. Note, however, that the predictive relationship with 

learning outcome was not statistically significant with the latent TSO model. Altogether, 

these findings do not provide support for Hypothesis 6b. 
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Table 38 

Goodness-of-Fit Indices of the Models for Domain-Specific Trait Performance-Prove 

Goal Orientation Predicting Learning (N - 244) 

Model df X2 P RMSEA 

RMSEA 

90% CI CFI TLI P 

1. Latent Trait 14 27.57 0.02 0.062 [0.026, 0.097] 0.96 0.9 

Learning Time 1 0.09 

Learning Time 2 0.02 

Learning Time 3 0.01 

Learning Time 4 0.12 

2. LTS 168 267.59 0.00 0.049 [0.038, 0.060] 0.95 0.93 

Learning Time 1 0.01 

Learning Time 2 0.05 

Learning Time 3 0.00 

Learning Time 4 0.08 

3. Latent TSO 165 231.27 0.00 0.04 [0.027, 0.052] 0.96 0.96 

Learning Time 1 0.04 

Learning Time 2 0.06 

Learning Time 3 0.01 

Learning Time 4 0.14 

Note. RMSEA = root mean square error of approximation; RMSEA 90% CI = root mean 

square error of approximation 90% confidence interval; CFI = comparative fit index; TLI 

= Tucker-Lewis index. 
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Hypothesis 6c. It was hypothesized that a latent trait-state model would provide a 

better fit than a trait model for explaining the relationship between domain-specific trait 

performance-avoid goal orientation and learning in an academic setting. Three models 

were tested; the fit indices for the models are displayed in Table 39. 

All three models met the cut-off value for CFI and the benchmark for an RMSEA 

close fit. However, the LTS model did not meet the cut-off for TLI. Although the latent 

TSO model exhibited the best fit, the predictive relationship with learning outcome was 

not statistically significant (nor was it significant in the other two models). Altogether, 

these findings do not provide support for Hypothesis 6c. 
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Table 39 

Goodness-of-Fit Indices of the Models for Domain-Specific Trait Performance-Avoid 

Goal Orientation Predicting Learning (N = 244) 

Model df X2 P RMSEA 

RMSEA 

90% CI CFI TLI P 

1. Latent Trait 14 19.73 0.14 0.041 [0.000, 0.079] 0.98 0.96 

Learning Time 1 -0.13 

Learning Time 2 0.02 

Learning Time 3 -0.05 

Learning Time 4 0.06 

2. LTS 168 261.88 0.00 0.047 [0.036, 0.058] 0.95 0.93 

Learning Time I -0.09 

Learning Time 2 0.00 

Learning Time 3 -0.05 

Learning Time 4 0.07 

3. Latent TSO 165 239.88 0.00 0.043 [0.030, 0.054] 0.96 0.95 

Learning Time 1 -0.14 

Learning Time 2 -0.04 

Learning Time 3 -0.07 

Learning Time 4 0.05 

Note. RMSEA = root mean square error of approximation; RMSEA 90% CI = root mean 

square error of approximation 90% confidence interval; CFI = comparative fit index; TLI 

= Tucker-Lewis index. 
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Domain-Specific Trait Learning Goal Orientation and Academic Performance 

(Hypothesis 7a through 7c) 

Hypothesis 7a. It was hypothesized that a latent trait-state model for explaining 

the relationship between domain-specific trait learning goal orientation and academic 

performance. Three models were tested; the fit indices are summarized in Table 40. 

Model 2, the LTS model, and Model 3, the latent TSO model, met the cut-off 

values for RMSEA, CFI, and TLI. Among the three models, only the LTS model was 

significantly related to academic performance {fi - . 14, p < .05). While this value was a 

slight improvement over the sample-weighted mean r reported by Payne et al. (2007; r = 

.12), it was less than the estimate true mean correlation (p = .16). Thus, these findings did 

not support Hypothesis 7a. 
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Table 40 

Goodness-of-Fit Indices of the Models for Domain-Specific Trait Learning Goal 

Orientation Predicting Academic Performance (N = 244) 

RMSEA 

Model df %2 p RMSEA 90% CI CFI TLI P 

1. Latent Trait 5 18J2 000 0J05 [0.057,0.158] 096 0^7 

AP 0.06 

2. LTS 123 224.76 0.00 0.058 [0.038,0.063] 0.95 0.94 

AP 0.14* 

3. Latent TSO 120 188.94 0.00 0.048 [0.034,0.061] 0.97 0.96 

AP 0.12 

Note. RMSEA = root mean square error of approximation; RMSEA 90% CI = root mean 

square error of approximation 90% confidence interval; CFI = comparative fit index; TLI 

= Tucker-Lewis index. 

*p < .05. 

Hypothesis 7b. It was hypothesized that a latent trait-state model for explaining 

the relationship between domain-specific trait performance-prove goal orientation and 

academic performance. Three models were tested; the fit indices are summarized in Table 

41. 

Model 1, the trait model, only met the benchmark cut-off value for CFI while 

Model 2, the LTS model, met the RMSEA benchmark for close fit and CFI benchmark 

for good fit. Model 3, the latent TSO model, however, met all criteria. Further, this model 

included a statistically significant relationship between latent trait and academic 
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performance ((/? = . 14, p < .05). this value was greater than the values reported by Payne 

et al. (2006), sample-weighted mean r - .01 and p = .02. Thus, Hypothesis 7b was 

supported. 

Table 41 

Goodness-of-Fit Indices of the Models for Domain-Specific Trait Performance-Prove 

Goal Orientation Predicting Academic Performance (N - 244) 

RMSEA 

Model df yl P RMSEA 90% CI CFI TLI P 

1. Latent Trait 5 \12\ OXM) 0.099 [0.050,0.152] (K96 088 

AP 0.09 

2. LTS 123 211.3 0.00 0.054 [0.041,0.066] 0.95 0.94 

AP 0.06 

3. Latent TSO 120 185.18 0.00 0.047 [0.033,0.060] 0.96 0.95 

AP 0.14* 

Note. RMSEA = root mean square error of approximation; RMSEA 90% CI = root mean 

square error of approximation 90% confidence interval; CFI = comparative fit index; TLI 

= Tucker-Lewis index. 

*p < .05. 

Hypothesis 7c. It was hypothesized that a latent trait-state model for explaining 

the relationship between domain-specific trait performance-avoid goal orientation and 

academic performance. Three models were tested; the fit indices are presented in Table 

42. 
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Only Model 3 met cut-off values for RMSEA, CFI and TLI. In addition, the path 

between the latent trait and academic performance was statistically significant (/? = .16,p 

< .01). However, results were in the opposite direction to that reported by Payne et al. 

(2007), sample-weighted mean r = -.05 and p = -.06. Thus, Hypothesis 7c was not 

supported. 

Table 42 

Goodness-of-Fit Indices of the Models for Domain-Specific Trait Performance-Avoid 

Goal Orientation Predicting Academic Performance (N = 244) 

_____ 

Model df %2 p RMSEA 90% CI CFI TLI fJ 

1. Latent Trait 5 1 2 J 9  003 0.079 [0.026,0.134] 097 092 

AP 0.12 

2. LTS 123 215.28 0.00 0.055 [0.043,0.067] 0.95 0.93 

AP 0.12 

3. Latent TSO 120 192.39 0.00 0.049 [0.036,0.062] 0.96 0.95 

AP 0.16** 

Note. RMSEA = root mean square error of approximation; RMSEA 90% CI = root mean 

square error of approximation 90% confidence interval; CFI = comparative fit index; TLI 

= Tucker-Lewis index. 

*p<. 05. 
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State Goal Orientation and Learning in an Academic Setting (Hypothesis 8a through 8c) 

Hypothesis 8a. It was hypothesized that a latent trait-state model would provide a 

better fit than a state model for explaining the relationship between situational influences 

on state learning goal orientation and learning in an academic setting. Three models were 

tested; the fit indices for the three models are presented in Table 43. 

Models 2 and 3, the LTS and latent TSO models, met the cut-off criteria for 

RMSEA, CFI, and TLI. However, there were no statistically significant relationships 

between latent state and any of the learning outcomes. Thus, Hypothesis 8a was not 

supported. 
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Table 43 

Goodness-of-Fit Indices of the Models for State Learning Goal Orientation Predicting 

Learning (N - 244) 

Model df X2 P RMSEA 

RMSEA 

90% CI CFI TLI P 

1. Latent State 166 275.81 0.00 0.052 [0.041,0.062] 0.95 0.94 

Learning Time 1 0.04 

Learning Time 2 0.06 

Learning Time 3 0.08 

Learning Time 4 0.09 

2. LTS 168 261.85 0.00 0.047 [0.036, 0.058] 0.96 0.95 

Learning Time 1 0.06 

Learning Time 2 0.06 

Learning Time 3 0.08 

Learning Time 4 0.09 

3. Latent TSO 165 241.52 0.00 0.043 [0.031,0.055] 0.96 0.95 

Learning Time 1 0.05 

Learning Time 2 0.07 

Learning Time 3 0.09 

Learning Time 4 0.09 

Note. RMSEA = root mean square error of approximation; RMSEA 90% CI = root mean 

square error of approximation 90% confidence interval; CFI = comparative fit index; TLI 

= Tucker-Lewis index. 
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Hypothesis 8b. It was hypothesized that a latent trait-state model would provide a 

better fit than a state model for explaining the relationship between situational influences 

on state performance-prove goal orientation and learning in an academic setting. Three 

models were tested; the fit indices for the three models are displayed in Table 44. 

All the models met benchmark values for RMSEA, CFI, and TLI. In addition, in 

all models, the relationship between latent state and learning in Time 4 was statistically 

significant. However, the size of all of model regression weights was nearly the same. 

These findings do not support Hypothesis 8b. 
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Table 44 

Goodness-of-Fit Indices of the Models for State Performance-Prove Goal Orientation 

Predicting Learning (N = 244) 

Model df X2 P RMSEA 

RMSEA 

90% CI CFI TLI ft 

1. Latent State 166 239.21 0.00 0.042 [0.030, 0.054] 0.96 0.96 

Learning Time 1 0.03 

Learning Time 2 0.12 

Learning Time 3 0.06 

Learning Time 4 0.23*** 

2. LTS 168 233.27 0.00 0.04 [0.026,0.051] 0.97 0.96 

Learning Time 1 0.03 

Learning Time 2 0.13 

Learning Time 3 0.06 

Learning Time 4 0.22*** 

3. Latent TSO 165 222.39 0.00 0.037 [0.023,0.049] 0.97 0.96 

Learning Time 1 0.03 

Learning Time 2 0.13 

Learning Time 3 0.07 

Learning Time 4 0.23*** 

Note. RMSEA = root mean square error of approximation; RMSEA 90% CI = root mean 

square error of approximation 90% confidence interval; CFI = comparative fit index; TLI 

= Tucker-Lewis index. 

*** p< .001. 
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Hypothesis 8c. It was hypothesized that a latent trait-state model would provide a 

better fit than a state model for explaining the relationship between situational influences 

on state performance-avoid goal orientation and learning in an academic setting. Three 

models were tested; the fit indices for the three models are shown in Table 45. 

Only Model 3, the latent TSO model, met the benchmark cut-off values for the 

RMSEA, CFI, and TLI. The path between the latent state construct and learning at Time 

4 was statistically significant for all three models, however in the opposite direction to 

that found by Payne et al. (2007). Thus, Hypothesis 8c was not supported. 
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Table 45 

Goodness-of-Fit Indices of the Models for State Performance-Avoid Goal Orientation 

Predicting Learning (N = 244) 

Model df P RMSEA 

RMSEA 

90% CI CFI TLI P 

1. Latent State 166 271.82 0.00 0.05 [0.040, 0.061] 0.95 0.94 

Learning Time 1 -0.12 

Learning Time 2 -0.01 

Learning Time 3 0.01 

Learning Time 4 0.16* 

2. LTS 168 279.96 0.00 0.052 [0.041, 0.062] 0.95 0.93 

Learning Time 1 -0.12 

Learning Time 2 0.00 

Learning Time 3 0.00 

Learning Time 4 0.13* 

3. Latent TSO 165 254.3 0.00 0.047 [0.035, 0.058] 0.96 0.95 

Learning Time 1 -0.12 

Learning Time 2 0.00 

Learning Time 3 0.01 

Learning Time 4 0.15* 

Note. RMSEA = root mean square error of approximation; RMSEA 90% CI = root mean 

square error of approximation 90% confidence interval; CFI = comparative fit index; TLI 

= Tucker-Lewis index. 

*p < .05. 
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State Goal Orientation and Academic Performance (Hypothesis 9a through 9c) 

It was hypothesized that a latent trait-state model would provide a better fit than a 

state model for explaining the relationship between situational influences of state learning 

(Hypothesis 9a), performance-prove (Hypothesis 9b), and performance-avoid 

(Hypothesis 9c) goal orientation with academic performance. 

The solutions for tests of Hypotheses 9a, 9b, and 9c were inadmissible due to 

empirical underidentification (Kenny, 1979). No unique solution exists for an 

underidentified model. Underidentification occurs when parameters cannot be 

adequately estimated. There are two types of underidentification. The first type is 

parametric underidentification which happens when a model cannot be identified based 

on its structure. The second type is empirical underidentification which happens when a 

model is not identified based on the sample data being analyzed. It was this second type 

which affected the analyses for Hypothesis 9. Empirical underidentification results in 

unstable parameter estimates and large standard errors. According to Kenny, 

multicollinearity is an example of empirical underidentification. 

Multicolinearity was not identified by tests for this problem during the data 

screening process. Once the issue was found during analysis, I followed Tabachnik and 

Fidell's (2001) recommendations to address multicolinearity and converted the state goal 

orientation variables into z-scores and reanalyzed the data. Unfortunately, this measure 

did not prevent empirical underidentification. Results were nearly identical. Tables 46 

through 48 contain the reanalyzed values. 

In Table 46, several of the standardized regression weights between the goal 

orientation scales and academic performance were in excess of 1.00, an indication of 
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multicollinearity (Byrne, 2010). The results were inconclusive. Models were 

inadmissible due to empirical underidentification. For Model 1, the regression 

coefficient for state at Time 3 to academic performance was larger than the other weights 

but was not significant, suggesting multicolinearity. All of the models contained 

relatively large but non-significant regression coefficients (e.g., p > 0.18). Also, the size 

of the significant regression coefficient for state at Time 3 predicting academic 

performance was much larger than anticipated. The meta-analysis by Payne at el. (2007) 

did not find a statistically significant relationship between the dimensions of state goal 

orientation and academic performance. In the current study, a small modest relationship 

was expected. Findings were inconclusive and Hypothesis 9a was not supported. 
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Table 46 

Goodness-of-Fit Indices of the Models for State Learning Goal Orientation Predicting 

Academic Performance (N = 244) 

Model df X2 P RMSEA 

RMSEA 

90% CI CFI TLI fi 

1. Latent State 118 215.2 0.00 0.058 [0.045,0.070] 0.95 0.94 

State at T1 to AP -0.27* 

State at T2 to AP 0.33* 

State at T3 to AP 0.34 

State at T4 to AP -0.21 

2. LTS 120 195.36 0.00 0.05 [0.037,0.063] 0.96 0.95 

State at T1 to AP -0.19 

State at T2 to AP 0.47*** 

State at T3 to AP 0.05 

State at T4 to AP -0.10 

3. Latent TSO 117 179.8 0.00 0.046 [0.032, 0.059] 0.97 0.96 

State at T1 to AP -0.19 

State at T2 to AP 0.41*** 

State at T3 to AP 0.19 

State at T4 to AP -0.20 

Note. RMSEA = root mean square error of approximation; RMSEA 90% CI = root mean 

square error of approximation 90% confidence interval; CFI = comparative fit index; TLI 

= Tucker-Lewis index; Statel = latent state at Time 1; State2 = latent state at Time 2; 

State3 = latent state at Time 3; State4 = latent state at Time 4; AP = academic 

performance. 

* p <  .05. * * * p < . 001. 
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In Table 47, all model solutions were inadmissible due to empirical 

underidentification. Standardized regression coefficients greater than 1.00 indicate 

mutiicolinearity. The large yet non-significant regression weights for latent state at Time 

3 for Models 1 (fi = -0.95) and 4 (fl = -0.74) also suggests multicolinearity. Tests yielded 

inconclusive findings. Thus Hypothesis 9b was not supported. 
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Table 47 

Goodness-of-Fit Indices of the Models for State Performance-Prove Goal Orientation 

Predicting Academic Performance (N = 244) 

Model df P RMSEA 

RMSEA 

90% CI CFI TLI P 

1. Latent State 118 196.8 0 0.052 [0.039,0.064] 0.96 0.95 

State at T1 to AP -0.02 

State at T2 to AP 0.03 

State at T3 to AP -0.95 

State at T4 to AP 1.16* 

2. LTS 120 191.17 0 0.049 [0.035,0.061] 0.97 0.96 

State at T1 to AP -0.09 

State at T2 to AP -0.06 

State at T3 to AP -0.60* 

State at T4 to AP 0.91** 

3. Latent TSO 117 180.54 0 0.047 [0.033,0.060] 0.97 0.96 

State at T1 to AP -0.09 

State at T2 to AP -0.05 

State at T3 to AP -0.74 

State at T4 to AP 1.05* 

Note. RMSEA = root mean square error of approximation; RMSEA 90% CI = root mean 

square error of approximation 90% confidence interval; CFI = comparative fit index; TLI 

= Tucker-Lewis index; State 1 = latent state at Time 1; State2 = latent state at Time 2; 

State3 = latent state at Time 3; State4 = latent state at Time 4; AP = academic 

performance. 

*p < .05. ** p < .01. 



www.manaraa.com

158 

All models in Table 48 were inadmissible. Again, this was due to empirical 

underidentification. The large yet non-significant regression coefficient at Time 4 (y? = 

0.27 - 0.30) for all models is evidence of multicolinearity. Results were inconclusive. 

Therefore Hypotheses 9c were not supported. 
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Table 48 

Goodness-of-Fit Indices of the Models for State Performance-Avoid Goal Orientation 

Predicting Academic Performance (N = 244) 

Model df X2 P 

RMSEA 

RMSEA 90% CI CFI TLI P 

1. Latent State 118 214.09 0 0.057 [0.045,0.069] 0.95 0.94 

State at T1 to AP 0.26* 

State at T2 to AP 0.09 

State at T3 to AP -0.52* 

State at T4 to AP 0.3 

2. LTS 120 223.69 0 0.059 [0.047,0.071] 0.94 0.93 

State at T1 to AP 0.24* 

State at T2 to AP 0.04 

State at T3 to AP -0.39* 

State at T4 to AP 0.27 

3. Latent TSO 117 205.62 0 0.055 [0.042,0.067] 0.95 0.94 

State at T1 to AP 0.23* 

State at T2 to AP 0.01 

State at T3 to AP -0.41* 

State at T4 to AP 0.3 

Note. RMSEA = root mean square error of approximation; RMSEA 90% CI = root mean 

square error of approximation 90% confidence interval; CF1 = comparative fit index; TLI 

= Tucker-Lewis index; State 1 = latent state at Time 1; State2 = latent state at Time 2; 

State3 = latent state at Time 3; State4 = latent state at Time 4; AP = academic 

performance. 

*p < .05. 
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Summary of Findings 

A summary of the results of all the model tests is presented in Table 49. 

Hypotheses la through lc were supported. Thus, a LTS model provided a better fit for 

general trait goal orientation than either a trait or state model. Hypotheses 2a and 2c were 

supported. A LTS model provided a better fit for domain-specific trait learning and 

performance-avoid orientation than either a trait or state model. However, a LTS model 

did not provide a better fit for domain-specific performance-prove goal orientation than a 

state model (Hypothesis 2b). Hypotheses 3a through 3c were supported. A LTS model 

provided a better fit for state goal orientation than either a trait or state model. 

None of the sub-hypotheses of Hypothesis 4 were supported. Accordingly, a LTS 

model did not provide a better fit than a trait model when examining the relationship 

between general trait goal orientation and learning in an academic setting. Hypotheses 5 a 

through 5c were not supported. A LTS model did not provide a better fit for explaining 

the relationship of general trait learning, performance-prove and performance-avoid goal 

orientation with academic performance. Hypotheses 6a through 6 c were not supported. 

It thus appears that domain-specific trait goal orientation does not predict learning and 

academic performance. Hypotheses 7a and 7c were not supported. However, Hypothesis 

7b, which examined the relationship between domain-specific trait performance-prove 

goal orientation and academic performance, was significant. 

Hypotheses 8a through 8c were not supported. Thus, a LTS model did not 

provide a better fit than a state model for explaining the relationship between situational 

influences on state performance-prove and performance-avoid goal orientation and 

learning in an academic setting. Hypotheses 9a through 9c were not supported as all 
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models were inadmissible due to empirical underestimation. Therefore, a LTS model did 

not provide a better fit than a state model for explaining the relationship between 

situational influences on state learning, performance-prove, and performance-avoid goal 

orientation and academic performance. 
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Table 49 

Summary of Findings 

Hypothesis Finding 

General trait goal orientation (HI) 

HI a: Learning 

Hlb: Performance-prove 

Hlc: Performance-avoid 

Domain-specific goal orientation (H2) 

H2a: Learning 

H2b: Performance-prove 

H2c: Performance-avoid 

State goal orientation (H3) 

H3a: Learning 

H3b: Performance-prove 

H3c: Performance-avoid 

General trait goal orientation and learning in academic setting (H4) 

H4a: Learning 

H4b: Performance-prove 

H4c: Performance-avoid 

General trait goal orientation and academic performance (H5) 

H5a: Learning 

H5b: Performance-prove 

H5c: Performance-avoid 

Supported 

Supported 

Supported 

Supported 

Not supported 

Supported 

Supported 

Supported 

Supported 

Not supported 

Not supported 

Not supported 

Not supported 

Not supported 

Not supported 
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Continued Table 49 

Hypothesis Finding 

Domain-specific goal orientation and learning in academic setting (H6) 

H6a: Learning Not supported 

H6b: Performance-prove Not supported 

H6c: Performance-avoid Not supported 

Domain-specific goal orientation and academic performance (H7) 

H7a: Learning Not supported 

H7b: Performance-prove Supported 

H7c: Performance-avoid Not supported 

State goal orientation and learning (H8) 

H8a: Learning Not supported 

H8b: Performance-prove Not supported 

H8c: Performance-avoid Not supported 

State goal orientation and academic performance (H9) 

H9a: Learning Not supported 

H9b: Performance-prove Not supported 

H9c: Performance-avoid Not supported 

Secondary Analysis: Variability in the Strength of Psychologically Active Characteristics 

of Situations 

This study uncovered a trend in the latent TSO model parameter coefficients for 

nearly all of the goal orientation dimensions. The latent trait regression coefficients for 

latent states decreased over time, while the latent occasion coefficients for the latent 
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states increased. This pattern was present in the estimates for general trait learning, 

performance-prove, and performance-avoid; domain-specific learning and performance-

avoid; and finally state learning and performance-avoid goal orientation. The pattern was 

not present for two dimensions: domain-specific performance-prove and state 

performance-prove goal orientation.1 

The standardized path (regression) coefficients from Figures 21 to 23, 25, 27, 28, 

30, and 31 presented as line graphs in Figures 32 to 40, respectively. The latent trait 

standardized regression weights for general trait learning goal orientation (Figure 32) 

were .97 for the state factor at Time 1, .91 at Time 2, .80 at Time 3, and .78 at Time 4. 

The latent occasion regression weights for latent state are .23 at Time 1, .43 at Time 2, 

.60 at Time 3, and .63 at Time 4. The latent occasion coefficients for general trait 

performance-prove goal orientation (Figure 33) start at .36 at Time 1 and increase 

temporally to .53 at Time 4, while the regression coefficients for latent trait decrease 

from .93 at Time 1 to .75 at Time 4. The latent occasion and latent trait weights are 

closest to converging for general trait performance-avoid goal orientation (latent occasion 

p4 - -66 and latent trait p4 = .75) found in Figure 34 and domain-specific performance-

avoid goal orientation (latent occasion f}4 = .69 and latent trait (54 = .72) found in Figure 

37. A possible explanation is the situation had a greater influence on goal orientation 

scores as time increased. Variability increased as individuals spent more time in the 

1 One possible explanation for the lack of the pattern may be because models other than the latent TSO 

provided a better fit for these two dimensions of goal orientation. In the case of domain-specific 

performance-prove goal orientation (Hypothesis 2b), the latent state model provided a better fit. For state 

performance-prove goal orientation (Hypothesis 3b), the LTS-AR model provided as good of a fit as the 

latent TSO model. 
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learning environment (i.e., classroom). 
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Figure 32. Latent trait and latent occasion standardized regression weights for the latent 

TSO model for general trait learning goal orientation. 
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Figure 33. Latent trait and latent occasion standardized regression weights for the latent 

TSO model for general trait performance-prove goal orientation. 
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Figure 34. Latent trait and latent occasion standardized regression weights for the latent 

TSO model for general trait performance-avoid goal orientation. 
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Figure 35. Latent trait and latent occasion standardized regression weights for the latent 

TSO model for domain-specific trait learning goal orientation. 
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Figure 36. Latent trait and latent occasion standardized regression weights for the latent 

TSO model for domain-specific trait performance-prove goal orientation. 
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Figure 3 7. Latent trait and latent occasion standardized regression weights for the latent 

TSO model for domain-specific trait performance-avoid goal orientation. 
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Figure 38. Latent trait and latent occasion standardized regression weights for the latent 

TSO model for state learning goal orientation. 
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Figure 39. Latent trait and latent occasion standardized regression weights for the latent 

TSO model for state performance-prove goal orientation. 
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Figure 40. Latent trait and latent occasion standardized regression weights for the latent 

TSO model for state performance-avoid goal orientation. 

Mischel (1977) suggested that the expression of psychological attributes is a 

function of the strength of situational cues or psychologically active characteristics of 

situations. This may describe only part of what is taking place. The influence of salient 

situational cues on the expression of goal orientation may also be a function of time. The 

strength of situational cues may grow as individuals spend more time in a setting. The 

strength of the situational may not be constant, but rather grow in influence as an 

individual acclimates to the setting. As an individual spends more time in a setting with 

psychologically active characteristics, the setting may have a greater influence on his or 

her behavior. The influence of important situational cues increases. Individuals regulate 

their behavior and over time gradually acclimate to the situation. Their responses to 



www.manaraa.com

170 

repeated exposure to psychologically active characteristics in a setting coalesce into a 

new pattern of behavior. The influence of trait on the behavioral expression of goal 

orientation diminishes as salient cues of the classroom (or possibly the broader academic 

setting) grow in strength and influence goal orientation expression to an increasing 

degree over time. Future research can test this assertion. One such possibility would be 

applying Tisak and Tisak's (2000) unified latent curve and latent state-trait model (LC-

LSTM). Their approach allows a researcher to compute latent trait and state residual 

(i.e., latent occasion) variance components and then examine the growth trajectories of 

the two variance components independently. 
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CHAPTER IV 

DISCUSSION AND CONCLUSION 

The first purpose of this study was to investigate the temporal stability of goal 

orientation operationalized at multiple levels of specificity. More specifically I tested 

how well Fleeson's (2001) density distribution theory applies to goal orientation using 

LTS models. The second purpose of this study was to test whether LST modeling of 

density distributions provided additional value when examining the predictive 

relationship of goal orientation with achievement-oriented performance in an academic 

setting, specifically learning and academic performance. An interpretation of the results 

for each hypothesis, implications for research and applied settings, study limitations, and 

future research are discussed in more detail below. 

HYPOTHESES la THROUGH 3c 

According to Fleeson (2001), individuals express behavior episodically as states. 

Psychological states are influenced by salient psychological cues in the situation and an 

underlying trait that has the same content, breath and scale. The density distribution 

approach suggests that individuals' score on a trait may be better represented as a 

distribution of state levels rather than just one of the levels (Fleeson & Leicht, 2006). 

Results supported all but one of the first nine hypotheses. The best fitting models 

extracted a variance component attributable to stability (i.e., latent trait) and components 

attributable to change (i.e., latent state residual or latent occasion). With the exception of 

domain-specific performance-prove goal orientation, LTS models fit better than trait or 

state models, no matter the level of specificity the goal orientation scale was intended to 
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measure: general trait, domain-specific trait, or state. In all but one condition, goal 

orientation more closely resembled a distribution of states influenced by both an 

underlying trait and the situation than a trait or a state. 

An LTS model, either the latent TSO or LTS-AR variant, provided the best fit 

among candidate models for all but one of the first nine hypotheses. The exception was 

Hypothesis 2b, which examined the performance-prove dimension of domain-specific 

trait goal orientation. For this dimension of goal orientation, the state-AR model 

provided the best fit. Domain-specific performance-prove goal orientation did not follow 

the assumptions of a density distribution. A possible explanation is the presence of trait 

change (Hertzog & Nesselroade, 1987). The participants' experience over the course of 

the semester may have changed their level of domain-specific trait performance-prove 

goal orientation. A number of previous studies have successfully induced changes in 

performance and performance-prove goal orientation (e.g., Chen & Mathieu, 2008; 

Kozlowski et al., 2001). The state-AR models and all LTS models share features that 

account for both stability (the stability /? coefficients in the state-AR model and the latent 

trait variable in the LTS models as well as stability /? coefficients in LTS models with an 

autoregressive component) and change (the latent state variables in both the state-AR and 

LTS models), albeit in differing degrees. 

For several dimensions of goal orientation, notably domain-specific trait learning 

and state performance-prove, two LTS models fit equally well: the latent TSO and LTS-

AR models. Based on the candidate models and the data, the two models provided 

equally as good a fit. For a number of hypotheses, the AICc A, values for the second best 

fitting models were approximately 2 or 3. These "second string" models have 
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meaningful empirical support with relative values of that size (Burnham and Anderson, 

2010). Model 6 was a LTS model with autoregressive states. For Model 7, the 

autoregressive component was associated with latent occasions. 

The difference between the models was the location of the autoregressive 

component, stability f3 coefficients. The placement of these coefficients influenced 

other parameter estimates. As an example, two sets of parameter coefficients found in 

the LTS-AR and latent TSO models used to test Hypothesis 3a (state learning goal 

or ientat ion)  differed by model :  la tent  t ra i t  path est imates  (y k )  and stabi l i ty  (3  

coefficients. For the LTS-AR model, the ykestimates for latent state at Times 1 through 

4 were .76, .73, .71, and .78, respectively. For the latent TSO model, the corresponding 

coefficients were .86, .85, .82, and .88. The coefficients for the latent TSO model were 

higher at each time period. For the LTS-AR model, the values were . 15 for f}^ .22 for 

/?2, and .22 for /?3. For the latent TSO model, the first ft value was not significant, while 

the second and third values were .37 and .76, respectively. For the LTS-AR model, ft 

values were generally smaller but more stable than the latent TSO variant. This may be 

because the autoregressive function (stability coefficients) on the latent state variables 

(fik) for the LTS-AR model is not independent of the effects of the latent trait variable 

(Cole et al., 2005). In this model, /?k is confounded with the latent trait variable. In 

Model 7, they are not confounded; the autoregressive function is associated with the 

latent occasion variable. This difference influences model interpretation. The latent TSO 

model constrains the latent trait and occasion variables to be uncorrelated. The model 

assumes no shared variance in the contributions of latent occasions and latent trait to the 

latent state variable. Stated differently, the latent TSO model assumes no interaction 
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between occasion and trait. The LTS-AR model and other LTS models without stability 

p coefficients do not include this assumption. Therefore, an LTS model with 

autoregressive latent states would provide a better account for trait x situation 

interaction. 

This explanation may explain why the LTS-AR model fit so well for domain-

specific learning and state performance-avoid goal orientation. Features of a classroom 

environment, such as exams and norm-referenced feedback, can induce a performance 

goal orientation frame (Payne et al., 2007). Data for the current study was collected in a 

similar setting. The LTS-AR model may fit well because of a latent performance-avoid 

trait x performance-inducing situation interaction. As mentioned previously, the 

induction of a performance orientation may also account for the trait change in domain-

specific performance-prove goal orientation. 

In the LTS model without an autoregressive component, the latent state residuals 

include situation as well as trait X situation interactions. In the LTS model with 

autoregressive states, trait x situation interactions may be present in the latent state 

variables and latent state autoregression. In contrast, the latent TSO model may not be 

able to detect interactions. This assertion should be tested in future research. 

Davey (2001) listed three alternative reasons to explain why LTS models with an 

autoregressive path coefficients (stability /Ts ) provide a good fit, even after trait-like 

variability is partitioned out. First, nearly all social science measures contain residual 

variability due to systematic error. These sources contribute to correlated uniqueness 

over time. Including method factors (Steyer et al., 1992) would reduce the correlation of 

observations over occasions by controlling for method bias. Second, autoregression may 
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be due to minimal change in the environment. The full variability of situations across 

time should be considered. Depending on the purpose of the research, the researcher may 

want occasions to be as independent as possible and include varying degrees and 

different types of psychologically active characteristics of situations. Finally, the 

autoregression may be due to the reciprocal relationship between individuals and the 

environment. While the environment may shape an individual's state, the individual may 

select and influence their environment. For example, individuals may avoid academic 

situations (i.e., academic majors and classes) that are incongruent with their levels of 

learning, performance-prove and performance-avoid goal orientations. 

More than One Best Model 

Burnham and Anderson (2010) anticipate researchers' possible frustration in not 

having "some value or cutoff point that provides a simple dichotomy to indicate what is 

important (i.e., 'significant' under the Neyman-Pearson null hypothesis testing procedure 

where a decision can be reached" (p. 78). Best model is not true model but rather an 

approximation. According to information-theoretic statistics, a true model does not exist. 

Full reality is infinitely dimensional and can only be approximated by models with finite 

numbers of parameters. The inability to identify a single best model is not a limitation of 

AICc or any other selection criterion. It is an indication that the data are inadequate to 

make a more precise inference. Follow up studies may help identify a single best model. 

HYPOTHESES 4a THROUGH 9c 

Only one of the performance prediction hypotheses was supported. In general, 

the LTS models did not provide a better explanation of the relationship between goal 
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orientation and performance outcomes in an academic setting. The single exception was 

domain-specific trait performance-prove goal orientation. Removing the variance 

attributable to the state residual factors improved the relationship. However, the LTS 

model was not the best fitting model for an earlier hypothesis examining this dimension. 

For Hypothesis 2b, which tested the measurement model of domain-specific 

performance-prove goal orientation, the best fitting model was the state-AR model. 

However, as a whole, the results suggest that LTS models do not increase the 

sensitivity of predictive analyses of goal orientation and performance in an academic 

setting. An alternative explanation for the failure to support the performance prediction 

hypotheses may be weak outcome measures. This is elaborated in the section discussing 

study limitations. 

IMPLICATIONS FOR FUTURE RESEARCH 

This study highlights a limitation of classical true-score theory (CTT; Allen & 

Yen, 1979). CTT was developed as a solution to solve the problem of measurement 

error. It does not tell us much about the nature of the construct other than the proportion 

of error and construct variance in observed scores. The ability to account for situational 

and trait x situation affects is limited. In CCT, discriminating a trait from a state 

measure is based on a coefficient of stability, also known as test-retest reliability (Allen 

& Yen, 1979). The method does not meet the level of sophistication that is often 

assumed when measures are applied in research. The inability of a state measure to 

discriminate between experimental conditions may be attributed to low sensitivity due to 

latent trait variance rather than a weak manipulation. Also, the inability of trait measure 
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to predict outcomes may be due to situational influences that alter individuals' scores. In 

both situations, the coefficient of stability is of limited value. Poor understanding of the 

variance components in a measure impedes our understanding of the construct. 

LTS models provide an extension of CTT to longitudinal data. Davey (2001) 

argues that this is the goal of LTS modeling. That is, the goal is to partition true score 

and other effects from observed scores and to further partition true score into person and 

person-in-situation components. According to Steyer et al. (1992), LST models are a 

generalization of CTT. In CTT, observed scores (Yik) are composed of a true score (T), 

representing person, and measurement error (e). In LST models, true score (rik) 

represents person-in-situation, not person. As mentioned previously, this is called a 

latent state variable and can be noted as Sk rather than tik. Also mentioned earlier, latent 

state variables (Sk) consists of two components: a latent trait variable (7), which is the 

person-across-situations, and latent state residuals (SRk), which is the effect of the 

situation and personXsituation interactions. Steyer et al. (1992) also defined LTS models 

that include method factors (Mt) to estimate the proportion of variance attributable to 

systematic error. In summary, LTS models can be used to address limitations in CTT 

true score. 

Kanfer, Chen and Pritchard (2008) developed a thematic heuristic to organize 

work motivation research to better reflect current trends and anticipate future 

developments. They refer to it as the three C's framework. It includes three dimensions: 

content (or person), context, and change. Content is the internal forces that drive 

motivation and includes person-centered approaches to motivation, such as traits. 

Context is the external forces that influence motivation and includes different features of 
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the setting. The final dimension allows for the examination of change in the internal and 

external forces that influence motivation. They speculate that future progress in content 

theories of work motivation will strongly depend on the extent to which we adequately 

consider the contextual and temporal affects. 

The current study wedded density distribution theory and LTS modeling. 

Hopefully, this marriage will be fruitful in producing future research that examines both 

the underlying trait and situational influences in the behavioral expression of goal 

orientation as well as other motivation and psychological constructs. Several examples 

of how the types of questions that can be answered by this approach are discussed next. 

The method used in this study can be applied to test a number of assertions 

researchers may make about a construct's density distribution and the nature of 

psychologically active characteristics of situations. Researchers could select a set of 

theoretically meaningful alternative LTS models to test a number of hypotheses about the 

nature of a density distribution. First, several of the SEM models used in the current 

study can be used to test for tested the stability of trait manifestations in states across time 

or setting. For this test, Models 4 and 5 from Figure 7 would be applied. The difference 

between the models is equality constraints on the latent trait variable path coefficients 

connected to the latent states. This comparison would test the null hypothesis H0: Yi = 

Y2 = Yk = Y- Second, one could assess the stability of psychologically active 

characteristics of situations over time or assess if different settings share the 

psychologically active characteristics. In this example, Model 5 from Figure 7 would be 

compared to Models 6 from Figure 8 or Model 7 from Figure 9. The differences between 

the models are autoregressive parameter coefficients (fik) between periods of 
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measurement. This comparison would test the null hypothesis H0: /?fe = 0. Third, 

researchers could test how to model the stability of situational influences more accurately 

by comparing Model 6 from Figure 8 to Model 7 from Figure 9. In Model 6, the 

autoregressive (ik is associated with the latent state variables (Sk), while in Model 7 it is 

associated with the latent occasion variables (Ok). Fourth, a researcher could test 

whether the degree of stability changes across occasions (either time or setting) using two 

methods: either by comparing Model 6 from Figure 8 to a LTS model with equality 

constraints on the autoregressive path coefficients (H0: /?x = /?2 = Pk-i = P)or by 

comparing Model 7 from Figure 9 to a LTS model with equality constraints on latent 

occasion variance (H0: a0l = Oq2 = <Jok 
= CTo)- Finally, one could test for the presence 

of Tett and Guterman's (2000) principle of trait activation or personXsituation 

interactions by comparing LTS models that allow for the interactions to models that do 

not (i.e., a latent STO model). The last example could be used to investigate 

These tests could be used to explore the influence of a number of situational 

features on goal orientation. A framework for organizing the features was proposed by 

Kaplan and Maehr (2007). They created a taxonomy of six situational cues relevant to 

goal orientation. Categories include the type of task, the autonomy in deciding how to 

complete the task, the type of recognition given for completing the task, the assignment 

of individuals to different groups, how task progress is evaluated, and time to complete 

the task (TARGET). Another option would be the types of feedback outlined by Park, 

et al. (2007). They found the three dimensions of goal orientation were related to 

different cost/value perceptions which predicted preferences in type of feedback. In a 

future study, the types of feedback could be manipulated to compliment or conflict with 
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goal orientation. Density distributions of other dispositions can be investigated using 

Tett & Burnett's (2003) trait-relevant situational features or Meyer et al.'s (2010) facet 

structure of situational strength. 

Steyer et al. (1992) described how to define several reliability indices using LTS 

model state, trait, method, and error variance components. Their LTS models permitted 

the estimation of reliability based on coefficients of common consistency (latent trait 

variance), occasion specificity (state residual variance) and method specificity 

(systematic error due to method effects). An estimate of consistency was created by 

combining common consistency and method specificity. Estimates of common reliability 

consist of common consistency and occasion specificity, while reliability was defined as 

the sum of common reliability plus method specificity. These estimates could be useful 

for assessing the psychometric properties during test development and take the place of 

using test-retest reliability as a coefficient of stability. 

If a test is to be used to measure a trait, as in the case of general or domain-

specific goal orientation, it should exhibit high consistency and low occasion specificity 

coefficients. If the goal is to measure a state, the test should have a low consistency and 

high occasion specificity. In both situations the reliability (common consistency + 

occasion specificity) should be high. 

This approach has been used to estimate consistency, occasion specificity and 

derived reliability for a number of constructs, including organizational commitment 

(Tisak & Tisak, 2000), attitudes towards non-citizen workers (Steyer & Schmitt, 1990), 

family support and problem behavior (Dumenci & Windle, 1998), mood (Steyer & Riedl, 

2004), personality scales from the Freiburg Personality Inventory (FPI), the NEO Five-
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Factor Inventory (NEO-FFI), and the Eysenck Personality Inventory (EPI; Deinzer, et al., 

1995), primary emotions, such as happiness, anger, fear, and sadness (Eid & Diener, 

1999), psychopathology (Steyer, Krambeer & Hannover, 2004), and test anxiety 

(Schermelleh, Keith, Moosbrugger, & Hodapp, 2004). 

PRACTICAL IMPLICATIONS FOR APPLIED 1-0 PSYCHOLOGY SETTINGS 

The current study provides several implications for 1-0 Psychology in applied 

settings. First, density distributions may help explain the weak predictive validity of non-

cognitive selection tests such as personality measures. According to Oppler, Peterson, 

and Russell (1992), the predictive validities for personality measures were considerably 

lower when estimated using a longitudinal design rather than a concurrent design. That 

is, the relationship between personality and work-related performance was lower for 

newcomers than for job incumbents. The reason for the difference may be changes in 

density distributions attributable to the work setting and how newcomers' express 

personality. If the job candidate was measured later, after working in the position for a 

period of time, his or her score may change and alter the predictive validity. The 

proportion of variance attributable to situation may have increased over time reducing the 

accuracy of newcomers' initial personality scores. In the current study, the situation 

accounted for a progressively larger portion of the variance in goal orientation as a 

function of time. In addition, models that accounted for this were more sensitive to the 

relationship between goal orientation and performance outcomes. Longitudinal 

predicative validities may be weaker because they do not account for self-regulation in 

personality expression (i.e., personality test scores) due to the job setting. Newcomer 

levels of an expressed personality attribute change over time, thus reducing the validity of 
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trait measures. Conversely, incumbents' personality scores may be more influenced by 

psychologically salient cues in the job setting. This would also help explain why 

concurrent validities are higher. 

Second, the approach used in the current study could improve our understanding 

of the dynamic nature of work. The current study addresses Kanfer's (2009) call for 

work motivation research with practical implications that integrates context and change 

into content or person-centered formulations of motivation. The influence of training 

initiatives intended to induce changes in goal orientation (e.g., Chen & Mathieu, 2008) 

could be measured more accurately. Furthermore, the influence of organizational factors 

on other motivation-related individual differences could be assessed using this approach. 

For example, practitioners could more accurately determine the impact of training design 

and organizational climate for learning on self-efficacy (Chen, Gully, & Eden, 2001) and 

self-esteem (Chen, Gully, & Eden, 2004). It could also be used to assess the influence of 

job design, the use of teams, organizational restructuring or other organizational 

interventions on individual differences used in personnel selection, such as the Big Five 

Model of personality (i.e., Barrick & Mount, 1991; Mount & Barrick, 1995). Self-

regulation factors, such as goal commitment (Klein,Wesson, Hollenbeck, Wright, & 

DeShon, 2001), could also be examined. As another example, it could be used to assess 

changes in employee engagement (Macy & Schneider, 2008), job satisfaction (Smith, 

Kendall, & Hulin, 1969) and job commitment (Meyer, Allen, & Smith, 1993) or emotions 

in the workplace, including emotional intelligence (Bar-On, 1997; Mayer, Caruso, & 

Salovey, 2000) and emotional affect (Watson, Clark, & Tellegen, 1988). Finally, the 

method could be adapted to model trait and situational factors in performance outcomes, 
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performance (Kaufman & Borman, 2004), and team performance (Salas, Burke, Fowlkes, 

& Priest, 2004). 

POSSIBLE REASONS FOR THE LACK OF LTS MODELS IN RESEARCH 

Several plausible reasons may explain the lack of LTS models in organizational 

research. The first reason is the perceived difficulty. A casual review of organizational 

journals may suggest an aversion of statistics more advanced than ANOVA or simple 

regression. The second reason may be the lack of exposure to LTS models. They are not 

mentioned in statistical texts on structural equation modeling. A third and related reason 

may be the lack of knowledge concerning how to test non-nested models. "Non-nested 

models appear infrequently in publications using SEM in the organizational sciences. 

One reason for this may be the lack of understanding of how one selects the "best" model 

(Vandenberg & Grell, 2009; p. 178)." A fourth possible reason is concern about how 

best to handle missing data due to attrition in the sample over time. There may also be 

concern about low statistical power due to small sample size or shrinking sample size due 

to attrition. A final reason may be the perceived effort. LTS models require large data 

sets and a minimum of 3 periods of data collection 

LIMITATIONS OF CURRENT STUDY 

The current study had several limitations. The first set of limitations was 

associated with the use of self-report measures. Several types of response distortion 

associated with self-report measures exist. The first type, socially desirable distortion 
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(SDD), can be intentional (impression management) or unintentional (self-deception; 

Paulhus, 1984; Paulhus & Reid, 1991). Intentional distortion is called impression 

management and is the deliberate over reporting of desirable behaviors and under 

reporting of undesirable behaviors. Unintentional distortion is called self-deception and 

represents overconfidence in one's ability. Self-deception is not a deliberate attempt to 

deceive, but rather inaccurate positive self-beliefs. Intentional distortion or impression 

management is typically more relevant in self-report measures due to the desire to look 

ones best in order to obtain the desired job. However, either type of SDD may result in 

attenuated observed variance in applicant responses. That is, participants who may be 

faking their responses are more likely to use less of the response scale than if they were 

honest. Further, due to genuine individual differences in goal orientation, there would be 

greater variance in response given a particular population. 

A second type of response distortion associated with self-report measures is 

carelessness. When participants do not fully read the items, they introduce additional 

measurement error. Poor quality data may result from participants rushing to complete 

questionnaire, not reading the complete questions or providing superficial answers. The 

results of the CFA for the current study point to participant carelessness. Negatively 

worded items were cut from 8 out of 9 goal orientation scales due to poor factor loadings. 

Also, participants may have attempted to recall and record their answers from the 

previous time they completed the questionnaires rather than examine their current 

feelings towards goal orientation. Due to the redundant nature of the questionnaires, 

participants may have written the same answers for similar general trait, domain specific 

trait, and state items. 
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Issues related to self-report measures may be exasperated by the population 

examined in the current study: undergraduate students. The mean age was less than 19 

years of age. In general, young adults have a limited understanding of themselves and 

their ability compared to older adults. This may have increased the likelihood of 

unintentional SDD. In addition, this is an active population who are trying to balance 

competing goals. The faster they completed the goal orientation questionnaire, the 

sooner they could start their next activity, such as take the final exam or join their friends 

at the student center. These limitations may have lowered the reliability of several goal 

orientation scales. Low scale reliabilities (e.g., 0.71 - 0.79) may have impeded the ability 

to find significant relationships with the performance measures. 

Another limitation of the current study was how performance was 

operationalized. For the hypotheses investigating learning in an academic setting, goal 

orientation was a better predictor of learning at Time 4 than Times 1,2 or 3. This may be 

due to how learning in an academic setting was operationalized. Learning at Time 4 was 

scores on the final exam. Learning at Times 1 through 3 was operationalized as quiz 

scores. The Time 4 measure was longer and more comprehensive than the other 3 

learning measures. Future research should control for this limitation. 

The last set of limitations concern the nature of the study setting. As mentioned 

previously, an academic setting provides a naturalistic performance-prove goal 

orientation manipulation (i.e., expectations about demonstrating performance and norm-

based feedback). However, other features of the setting such as the weather, student 

course load, sports, clubs and other extracurricular activities, as well as a sense of 

urgency as the semester draws to a close, may have contributed to changes in goal 
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orientation. Because the study did not include a true experimental design with a control 

group, one may not make the causal inference that changes in goal orientation were only 

due to basic features of the Introduction to Psychology classroom setting (Shadish, Cook, 

& Campbell, 2002). Measurement period was confounded with systematic changes in the 

learning environment. The study coincides with the beginning and end of the marking 

period. Knowledge about the end of the course may have contributed to a distinct sense 

of urgency as the time approached. This is unique to academic life and may not 

generalize to other settings. To summarize, changes in goal orientation may be due to 

situational factors other than those considered in the design of the study. 

CONCLUSION 

The current study demonstrated the value of density distribution theory and LTS 

modeling for understanding human behavior, in particular, how individuals perceive and 

act in achievement situations. The LTS models provided a better explanation of the 

underlying structure of goal orientation than traditional trait or state models. Whether 

measured as a state or a trait, goal orientation contains variance components attributable 

to both. This was interpreted as proof that goal orientation is best described as a density 

distribution rather than a trait or a state. Unfortunately, the ability to isolate variance 

components in LTS models did not improve the ability to detect relationships between 

goal orientation and performance outcomes not. 
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APPENDIX A 

THE ABBREVIATED MOTIVATIONAL TRAIT QUESTIONNAIRE 

SELF-DESCRIPTION QUESTIONNAIRE 

INSTRUCTIONS: 
This questionnaire asks you to respond to statements about your attitudes, opinions, 
and behaviors. Read each statement carefully, and decide whether or not the 
statement describes you. Using the scale at the top of each page indicate the degree 
to which the ENTIRE statement is true of you. Give only one answer for each 
statement. 

Some of the statements may refer to experiences you may not have had. Respond 
to these statements in terms of how true you think it WOULD BE of you. 

Look at the sample statement below. 

SAMPLE STATEMENT: 

1 
• 

2 
• 

3 4 
• • 

5 
• 

6 
• 

Very Somewhat Somewhat Very 
UNTRUE UNTRUE UNTRUE TRUE TRUE TRUE 

of Me of Me of Me of Me of Me of Me 

I like to go to parties. 

MARK 1 " if you really dislike parties and you try to avoid them. 

2 " if you generally dislike parties and only go when you have to. 

3 " if you think parties are okay but generally prefer not to go. 

4 ' if you think parties are okay and generally prefer to go. 

5 " if you generally like parties and go to most of the time. 

6 " if you really like parties and only miss one if you absolutely have to. 

PLEASE NOTE: 
• There are no right or wrong answers. Simply describe yourself honestly and 

state your opinions accurately. 
• Deciding on an answer may be difficult for some of the statements. If you 

have a hard time deciding, choose the answer that is MOST true of you. 
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• Some of the items will seem repetitive. These are not meant to be trick 
questions. Do not look back at your previous answers, simply answer each 
question honestly. 

In deciding on your answer, consider your life in general and not only the last few 
weeks or months. 

1 2 3 4 5 6 

Very Somewhat Somewhat Very 
UNTRUE UNTRUE UNTRUE TRUE TRUE TRUE 

of Me of Me of Me of Me of Me of Me 

1. Item 1. 

2. Item 2. 

3. Item 3. 

4. Item 4. 

5. Item 5. 

6. Item 6. 

7. Item 7. 

8. Item 8. 

9. Item 9. 

10. Item 10. 

11. Item 11. 

12. Item 12. 

13. Item 13. 

14. Item 14. 

15. Item 15. 

16. Item 16. 

17. Item 17. 

18. Item 18. 
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MOTIVATIONAL TRAIT QUESTIONNAIRE: SCORING KEY 

18 ITEM FORM 

Note: (R) indicates that the item is reverse scored. 

Learning Goal Orientation (Personal Mastery) 
6, 7, 8,12, 13 (R), 16 

Performance-Prove Goal Orientation (Competitive Excellence) 
1,2, (R), 4, 9,10, 14 

Performance-Avoid Goal Orientation (Motivation Anxiety) 
3,5, 11 (R), 15, 17, 18 
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APPENDIX B 

ITEMS FROM THE ACADEMIC DOMAIN GOAL ORIENTATION MEASURE 

The next set of questions includes statements about your attitudes, opinions, and 
behaviors within a classroom setting or academic environment. In deciding on your 
answer, consider your academic experiences in general. 

Very 
UNTRUE 

of Me 
UNTRUE 

of Me 

Somewhat 
UNTRUE 

of Me 

Somewhat 
TRUE 
of Me 

TRUE 
of Me 

Very 
TRUE 
of Me 

19. Item 19. 

20. Item 20. 

21. Item 21. 

22. Item 22. 

23. Item 23. 

24. Item 24. 

25. Item 25. 

26. Item 26. 

27. Item 27. 

28. Item 28. 

29. Item 29. 

30. Item 30. 

31. Item 31. 

32. Item 32. 

33. Item 33. 

34. Item 34. 

35. Item 35. 

36. Item 36. 
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ACADEMIC DOMAIN GOAL ORIENTATATION INSTRUMENT: SCORING KEY 
18 ITEM FORM 

Note: (R) indicates that the item is reverse scored. 

Learning Goal Orientation (Personal Mastery) 
24, 25, 26, 30,31 (R), 34 

Performance-Prove Goal Orientation (Competitive Excellence) 
19,20 (R), 22, 27,28, 32 

Performance-Avoid Goal Orientation (Motivation Anxiety) 
21,23,29 (R), 33, 35, 36 
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APPENDIX C 

ITEMS FROM THE STATE GOAL ORIENTATION MEASURE 

The next set of questions also includes statements about your attitudes, opinions, 
and behaviors within a classroom setting or academic environment. In deciding on 
your answer for these questions, consider how you currently feel. 

1 2 3 4 5 6 

Very Somewhat Somewhat Very 
UNTRUE UNTRUE UNTRUE TRUE TRUE TRUE 

of Me of Me of Me of Me of Me of Me 

37. Item 37. 

38. Item 38. 

39. Item 39. 

40. Item 40. 

41. Item 41. 

42. Item 42. 

43. Item 43. 

44. Item 44. 

45. Item 45. 

46. Item 46. 

47. Item 47. 

48. Item 48. 

49. Item 49. 

50. Item 50. 

51. Item 51. 

52. Item 52. 

53. Item 53. 

54. Item 54. 
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STATE GOAL ORIENTATATION INSTRUMENT: SCORING KEY 
18 ITEM FORM 

Note: (R) indicates that the item is reverse scored. 

Learning Goal Orientation (Personal Mastery) 
42,43,44,48,49 (R), 52 

Performance-Prove Goal Orientation (Competitive Excellence) 
37, 38 (R), 40,45,46, 50 

Performance-Avoid Goal Orientation (Motivation Anxiety) 
39,41,47 (R), 51, 53, 54 
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AMOS GRAPHICS MODELS FOR HYPOTHESIS la 
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Figure DI. Model 1: Trait model for Hypothesis la. 

Note. e_2 = error covariance between occasions of measurement for item 2; e_3 = error 

covariance between occasions of measurement for item 3; e_4 = error covariance 

between occasions of measurement for item 4; e_6 = error covariance between occasions 

of measurement for item 6; e21 = error for item 2 at time 1; e31 - error for item 3 at time 

1; e41 = error for item 4 at time 1; e61 = error for item 6 at time 1; e22 - error for item 2 

at time 2; e32 = error for item 3 at time 2; e42 = error for item 4 at time 2; e62 = error for 

item 6 at time 2; e23 = error for item 2 at time 3; e33 = error for item 3 at time 3; e43 = 

error for item 4 at time 3; e63 = error for item 6 at time 3; e24 = error for item 2 at time 

4; e34 = error for item 3 at time 4; e44 = error for item 4 at time 4; e64 - error for item 6 
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at time 4; ql2tl = learning item 2 at time 1; qBtl = learning item 3 at time 1; ql4tl = 

learning item 4 at time 1; ql6tl = learning item 6 at time 1; ql2t2 = learning item 2 at time 

2; ql3t2 = learning item 3 at time 2; ql4t2 = learning item 4 at time 2; ql6t2 = learning 

item 6 at time 2; ql2t3 = learning item 2 at time 3; ql3t3 = learning item 3 at time 3; ql4t3 

= learning item 4 at time 3; ql6t3 = learning item 6 at time 3; ql2t4 = learning item 2 at 

time 4; ql3t4 = learning item 3 at time 4; ql4t4 = learning item 4 at time 4; ql6t4 = 

learning item 6 at time 4; r_12 = path coefficient for learning item 2; r_13 = path 

coefficient for learning item 3; r_14 = path coefficient for learning item 4; T learning = 

trait learning. 
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Figure D2. Model 2: State model for Hypothesis la. 

Note. See note to Figure Dl. learning 1 = state learning at time 1; learning2 = state 

learning at time 2; learning3 = state learning at time 3; learning4 = state learning at time 

4. 
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Figure D3. Model 3: State model with first-order autoregressive state factors for 

Hypothesis la. 

Note. See note to Figures D1 and D2. e ll = error for latent state learning at time 1; e_12 

= error for latent state learning at time 2; e_13 = error for latent state learning at time 3; 

e_14 = error for latent state learning at time 4. 
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Figure D4. Model 4: LTS model for Hypothesis la. 

Note. See note to Figures D1 and D2. 01 = latent occasion at time 1; 02 = latent 

occasion at time 2; 03 = latent occasion at time 3; 04 = latent occasion at time 4. 
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Figure D5. Model 5: LTS model with equality constraints on latent trait factor loadings 

for Hypothesis la. 

Note. See note to Figures Dl, D2 and D4. reg t = path coefficient for latent trait. 
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Figure D6. Model 6: LTS model with first-order autoregressive latent state factors for 

Hypothesis la. 

Note. See note for Figures Dl, D2, D4, and D5. 
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Figure D7. Model 7: LTS model with first-order autoregressive occasion factors for 

Hypothesis la. 

Note. See note for Figures Dl, D2, D4, and D5. e o2 = error term for latent occasion at 

time 2; e_o3 = error term for latent occasion at time 3; e_o4 = error term for latent 

occasion at time 4. 
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APPENDIX E 

AMOS GRAPHICS MODELS FOR HYPOTHESIS lb 
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Figure El. Model 1: Trait model for Hypothesis lb. 

Note. e_2 = error covariance between occasions of measurement for item 1; e_3 = error 

covariance between occasions of measurement for item 2; e_4 = error covariance 

between occasions of measurement for item 3; e_6 = error covariance between occasions 

of measurement for item 4; e21 = error for item 1 at time 1; e31 = error for item 2 at time 

1; e41 = error for item 3 at time 1; e61 = error for item 4 at time 1; e22 = error for item 1 

at time 2; e32 = error for item 2 at time 2; e42 = error for item 3 at time 2; e62 = error for 

item 4 at time 2; e23 = error for item 1 at time 3; e33 - error for item 2 at time 3; e43 = 

error for item 3 at time 3; e63 = error for item 4 at time 3; e24 = error for item 1 at time 

4; e34 = error for item 2 at time 4; e44 = error for item 3 at time 4; e64 = error for item 4 
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at time 4; qppltl = performance-prove item 1 at time I; qpp2tlR = performance-prove 

item 2 (reverse scored) at time 1; qpp3tl = performance-prove item 3 at time 1; qpp4tl = 

performance-prove item 4 at time 1; qpplt2 = performance-prove item 1 at time 2; 

qpp2t2R = performance-prove item 2 (reverse scored) at time 2; qpp3t2 = performance-

prove item 3 at time 2; qpp4t2 = performance-prove item 4 at time 2; qpp 113 = 

performance-prove item 1 at time 3; qpp2t3R = performance-prove item 2 (reverse 

scored) at time 3; qpp3t3 = performance-prove item 3 at time 3; qpp4t3 = performance-

prove item 4 at time 3; qpplt4 = performance-prove item 1 at time 4; qpp2t4R = 

performance-prove item 2 (reverse scored) at time 4; qpp3t4 - performance-prove item 3 

at time 4; qpp4t4 = performance-prove item 4 at time 4; r 12 = path coefficient for 

performance-prove item 1; r 13 = path coefficient for performance-prove item 2; r_14 = 

path coefficient for performance-prove item 3; T_perf-pr = trait performance-prove. 
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Figure E2. Model 2: State model for Hypothesis lb. 

Note. See note to Figure El. r_ppl = path coefficient for performance-prove item 1; 

r_pp2 = path coefficient for performance-prove item 2; r_pp3 = path coefficient for 

performance-prove item 3; perf-prl = state performance-prove at time 1; perf-pr2 = state 

performance-prove at time 2; perf-pr3 = state performance-prove at time 3; perf-pr4 = 

state performance-prove at time 4. 
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Figure E3. Model 3: State model with first-order autoregressive state factors for 

Hypothesis lb. 

Note. See note to Figures El and E2. e_ppl = error for latent state performance-prove at 

time 1; ejpp2 = error for latent state performance-prove at time 2; e_pp3 = error for 

latent state performance-prove at time 3; e_pp4 = error for latent state performance-prove 

at time 4. 
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Figure E4. Model 4: LTS model for Hypothesis lb. 

Note. See note to Figures El and E2. 01 = latent occasion at time 1; 02 = latent 

occasion at time 2; 03 = latent occasion at time 3; 04 = latent occasion at time 4. 
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Figure E5. Model 5: LTS model with equality constraints on latent trait factor loadings 

for Hypothesis lb. 

Note. See note to Figures El, E2 and E4. reg t = path coefficient for latent trait. 
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Figure E6. Model 6: LTS model with first-order autoregressive latent state factors for 

Hypothesis lb. 

Note. See note for Figures El, E2, E4, and E5. 



www.manaraa.com

226 

0. 

,e2V »• qpp1t1 01 
r_PPl 0 reg_o 

S>n. »-qpp2t1R-« 
'„PP3 

»• qpp3t1 * 
1 

r_pp2 

perf-pr1 
A 

* 

8-2 , 0. 

e_3 • e61 *• qpp4t1 * 

e_4 
0. 

8-2 • qpp1t2 , 
r„ppi 0 reg_o 

e_3 ; 

I 
e_6 

^42 

»• qpp2t2R -< 
r_pp3 

»• qpp3t2 •« 
1 

CN O
. a

 

perf-pr2 
A 

e_2 • e„2 0, 

e 3 ej!> 
f 
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Figure E7. Model 7: LTS model with first-order autoregressive occasion factors for 

Hypothesis lb. 

Note. See note for Figures El, E2, E4, and E5. e_o2 = error term for latent occasion at 

time 2; e_o3 = error term for latent occasion at time 3; e_o4 = error term for latent 

occasion at time 4. 
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Figure Fl. Model 1: Trait model for Hypothesis lc. 

Note. e_2 = error covariance between occasions of measurement for item 2; e_3 = error 

covariance between occasions of measurement for item 4; e_4 = error covariance 

between occasions of measurement for item 5; e_6 = error covariance between occasions 

of measurement for item 6; e21 = error for item 2 at time 1; e31 = error for item 4 at time 

1; e41 = error for item 5 at time 1; e61 = error for item 6 at time 1; e22 = error for item 2 

at time 2; e32 = error for item 4 at time 2; e42 = error for item 5 at time 2; e62 = error for 
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item 6 at time 2; e23 = error for item 2 at time 3; e33 = error for item 4 at time 3; e43 = 

error for item 5 at time 3; e63 = error for item 6 at time 3; e24 = error for item 2 at time 

4; e34 = error for item 4 at time 4; e44 = error for item 5 at time 4; e64 = error for item 6 

at time 4; qpa2tl = performance-avoid item 2 at time 1; qpa4tl = performance-avoid item 

4 at time 1; qpa5tl = performance-avoid item 5 at time 1; qpa6tl = performance-avoid 

item 6 at time 1; qpa2t2 = performance-avoid item 2 at time 2; qpa4t2 = performance-

avoid item 4 at time 2; qpa5t2 = performance-avoid item 5 at time 2; qpa6t2 = 

performance-avoid item 6 at time 2; qpa2t3 = performance-avoid item 2 at time 3; qpa4t3 

= performance-avoid item 4 at time 3; qpa5t3 = performance-avoid item 5 at time 3; 

qpa6t3 = performance-avoid item 6 at time 3; qpa2t4 = performance-avoid item 2 at time 

4; qpa4t4 = performance-avoid item 4 at time 4; qpa5t4 = performance-avoid item 5 at 

time 4; qpa6t4 = performance-avoid item 6 at time 4; r_pal = path coefficient for 

performance-avoid item 2; r_pa2 = path coefficient for performance-avoid item 4; r_pa3 

= path coefficient for performance-avoid item 5; T_Perf-Av = trait performance-avoid. 
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Figure F2. Model 2: State model for Hypothesis lc. 

Note. See note to Figure Fl. performance-avoid 1 = state performance-avoid at time 1; 

performance-avoid2 = state performance-avoid at time 2; performance-avoid3 = state 

performance-avoid at time 3; performance-avoid4 = state performance-avoid at time 4. 
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Figure F3. Model 3: State model with first-order autoregressive state factors for 

Hypothesis lc. 

Note. See note to Figures El and E2. e ll = error for latent state performance-avoid at 

time 1; e_12 = error for latent state performance-avoid at time 2; e_13 = error for latent 

state performance-avoid at time 3; e_14 = error for latent state performance-avoid at time 

4. 
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Figure F4. Model 4: LTS model for Hypothesis lc. 

Note. See note to Figures El and E2. 01 = latent occasion at time 1; 02 = latent 

occasion at time 2; 03 = latent occasion at time 3; 04 = latent occasion at time 4. 
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Figure F5. Model 5: LTS model with equality constraints on latent trait factor loadings 

for Hypothesis lc. 

Note. See note to Figures El, E2 and E4. reg t = path coefficient for latent trait. 
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Figure F6. Model 6: LTS model with first-order autoregressive latent state factors for 

Hypothesis lc. 

Note. See note for Figures El, E2, E4, and E5. 
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Figure F7. Model 7: LTS model with first-order autoregressive occasion factors for 

Hypothesis lc. 

Note. See note for Figures El, E2, E4, and E5. e_o2 = error term for latent occasion at 

time 2; e_o3 = error term for latent occasion at time 3; e o4 = error term for latent 

occasion at time 4. 
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Figure Gl. Model 1: Trait model for Hypothesis 2a. 

Note. e_2 = error covariance between occasions of measurement for item 2; e_3 = error 

covariance between occasions of measurement for item 3; e_4 = error covariance 

between occasions of measurement for item 4; e_6 = error covariance between occasions 

of measurement for item 6; e21 = error for item 2 at time 1; e31 = error for item 3 at time 

1; e4I = error for item 4 at time 1; e61 = error for item 6 at time 1; e22 = error for item 2 

at time 2; e32 = error for item 3 at time 2; e42 = error for item 4 at time 2; e62 = error for 

item 6 at time 2; e23 = error for item 2 at time 3; e33 = error for item 3 at time 3; e43 = 

error for item 4 at time 3; e63 = error for item 6 at time 3; e24 - error for item 2 at time 

4; e34 = error for item 3 at time 4; e44 = error for item 4 at time 4; e64 = error for item 6 
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at time 4; ql2tl = learning item 2 at time 1; ql3tl = learning item 3 at time 1; ql4tl = 

learning item 4 at time 1; ql6tl = learning item 6 at time 1; ql2t2 = learning item 2 at time 

2; ql3t2 = learning item 3 at time 2; ql4t2 = learning item 4 at time 2; ql6t2 - learning 

item 6 at time 2; ql2t3 = learning item 2 at time 3; ql3t3 = learning item 3 at time 3; ql4t3 

= learning item 4 at time 3; ql6t3 = learning item 6 at time 3; ql2t4 = learning item 2 at 

time 4; ql3t4 = learning item 3 at time 4; ql4t4 = learning item 4 at time 4; ql6t4 = 

learning item 6 at time 4; r_12 = path coefficient for learning item 2; r_13 = path 

coefficient for learning item 3; r_14 = path coefficient for learning item 4; T leaming = 

trait learning. 



www.manaraa.com

237 

e 2 

e 4 

0, 

$2% 1 • ql2t1 

e3 ̂  1 •- q!3t1 
- 1 
^e41 •- ql4t1 

e_2.. o, 
1 

e_3 re61 ql6t1 

e 4 

* fJ2 0, 
. r_l3 

r-w leamingl 

e_2 

e 3 . 

rJ2 0, $s2g 1 - ql2t2 
e-6 *e32 1 • ql3t2 rJ3 

Z 1 r-w Ieaming2 
js42 • ql4t2 * 
* 

I e_2 "• % 

e_3 ; e_6 e_3 *e62 »- ql6t2 

° ,  

e_2 *52^ 1 • q!2t3 
3 

1 

~e43 1 • ql4t3 

rJ2 0, 

j»3 3 * ql3t3 ^ r-13 

1 r-M Iearning3 

e_2' o. 

_3 *e63 1 • ql6t3 * 

-4 o, 1 

g&. ' * q|2t4 > r_l2 0. 

_s *e3^ 1 •- ql3t4 ^ r-13 

' 1 r-w Iearning4 
e44 *> ql4t4 * 

1 

o, 

^*e64 1 • ql6t4 * 

Figure G2. Model 2: State model for Hypothesis 2a. 

Note. See note to Figure Gl. learning 1 = state learning at time 1; learning2 = state 

learning at time 2; learning3 = state learning at time 3; learning4 = state learning at time 

4. 
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Figure G3. Model 3: State model with first-order autoregressive state factors for 

Hypothesis 2a. 

Note. See note to Figures G1 and G2. e ll = error for latent state learning at time 1; e_12 

= error for latent state learning at time 2; e_13 = error for latent state learning at time 3; 

e_14 = error for latent state learning at time 4. 
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Figure G4. Model 4: LTS model for Hypothesis 2a. 

Note. See note to Figures G1 and G2. Ol = latent occasion at time 1; 02 = latent 

occasion at time 2; 03 = latent occasion at time 3; 04 = latent occasion at time 4. 
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Figure G5. Model 5: LTS model with equality constraints on latent trait factor loadings 

for Hypothesis 2a. 

Note. See note to Figures Gl, G2 and G4. reg t = path coefficient for latent trait. 
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Figure G6. Model 6: LTS model with first-order autoregressive latent state factors for 

Hypothesis 2a. 

Note. See note for Figures Gl, G2, G4, and G5. 
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Figure G7. Model 7: LTS model with first-order autoregressive occasion factors for 

Hypothesis 2a. 

Note. See note for Figures Gl, G2, G4, and G5. e_o2 = error term for latent occasion at 

time 2; e_o3 = error term for latent occasion at time 3; e_o4 = error term for latent 

occasion at time 4. 
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APPENDIX H 

AMOS GRAPHICS MODELS FOR HYPOTHESIS 2b 

0. 

f2\ • qppltl , 

•"qpp2t1R, 

^41 qpp3t1 , 

e_2 „ 0, 

e_3 e61 w •- qpp4t1 •, 

e_4 
0, 

e_2 qpp1t2 

e_3 . e_6 >3%. • qpp2t2R„ 
I 

e_4 ^ V2 qpp3t2 -• 

1 •' e_2 . 0, 

®_6 e 3 
i \ 

^62 » qpp4t2 •« 

. e_4 
0. 

e_2 ^2%, »• qpp1t3 •* 

e_3 e_6 >k • qpp2t3R-« 

e_4 i ^43 r- qpp3t3 -• 

1 e. 2 0. 

e-6 e_3 *fe63 r »• qpp4t3 •* 

0. 

»• qpp1t4 •» 

e 6 
e3i, 

%)44 

»• qpp2t4R •» e3i, 

%)44 • qpp3t4 * 

°' 1 

e64 » qpp4t4 * 

Figure HI. Model 1: Trait model for Hypothesis 2b. 

Note. e_2 = error covariance between occasions of measurement for item 1; e_3 = error 

covariance between occasions of measurement for item 2; e_4 = error covariance 

between occasions of measurement for item 3; e_6 = error covariance between occasions 

of measurement for item 4; e21 = error for item 1 at time 1; e31 = error for item 2 at time 

1; e41 = error for item 3 at time 1; e61 = error for item 4 at time 1; e22 = error for item 1 

at time 2; e32 = error for item 2 at time 2; e42 = error for item 3 at time 2; e62 = error for 

item 4 at time 2; e23 = error for item 1 at time 3; e33 = error for item 2 at time 3; e43 = 

error for item 3 at time 3; e63 = error for item 4 at time 3; e24 = error for item 1 at time 

4; e34 = error for item 2 at time 4; e44 = error for item 3 at time 4; e64 = error for item 4 
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at time 4; qppltl = performance-prove item 1 at time 1; qpp2tlR = performance-prove 

item 2 (reverse scored) at time 1; qpp3tl = performance-prove item 3 at time 1; qpp4tl = 

performance-prove item 4 at time 1; qpplt2 = performance-prove item 1 at time 2; 

qpp2t2R = performance-prove item 2 (reverse scored) at time 2; qpp3t2 = performance-

prove item 3 at time 2; qpp4t2 = performance-prove item 4 at time 2; qpplt3 = 

performance-prove item 1 at time 3; qpp2t3R = performance-prove item 2 (reverse 

scored) at time 3; qpp3t3 = performance-prove item 3 at time 3; qpp4t3 = performance-

prove item 4 at time 3; qpplt4 = performance-prove item 1 at time 4; qpp2t4R = 

performance-prove item 2 (reverse scored) at time 4; qpp3t4 = performance-prove item 3 

at time 4; qpp4t4 = performance-prove item 4 at time 4; r 12 = path coefficient for 

performance-prove item 1; r_13 = path coefficient for performance-prove item 2; r_14 = 

path coefficient for performance-prove item 3; T_perf-pr = trait performance-prove. 
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Figure H2. Model 2: State model for Hypothesis 2b. 

Note. See note to Figure HI. r_ppl = path coefficient for performance-prove item 1; 

r_pp2 = path coefficient for performance-prove item 2; rjpp3 = path coefficient for 

performance-prove item 3; perf-prl = state performance-prove at time 1; perf-pr2 = state 

performance-prove at time 2; perf-pr3 - state performance-prove at time 3; perf-pr4 = 

state performance-prove at time 4. 
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Figure H3. Model 3: State model with first-order autoregressive state factors for 

Hypothesis 2b. 

Note. See note to Figures HI and H2. e_ppl = error for latent state performance-prove at 

time 1; e_pp2 = error for latent state performance-prove at time 2; e_pp3 = error for 

latent state performance-prove at time 3; e_pp4 = error for latent state performance-prove 

at time 4. 
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Figure H4. Model 4: LTS model for Hypothesis 2b. 

Note. See note to Figures HI and H2. 01 = latent occasion at time 1; 02 = latent 

occasion at time 2; 03 = latent occasion at time 3; 04 = latent occasion at time 4. 
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Figure H5. Model 5: LTS model with equality constraints on latent trait factor loadings 

for Hypothesis 2b. 

Note. See note to Figures HI, H2 and H4. reg t = path coefficient for latent trait. 
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Figure H6. Model 6: LTS model with first-order autoregressive latent state factors for 

Hypothesis 2b. 

Note. See note for Figures HI, H2, H4, and H5. 
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Figure H7. Model 7: LTS model with first-order autoregressive occasion factors for 

Hypothesis 2b. 

Note. See note for Figures HI, H2, H4, and H5. e_o2 = error term for latent occasion at 

time 2; e_o3 = error term for latent occasion at time 3; e_o4 = error term for latent 

occasion at time 4. 
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APPENDIX I 

AMOS GRAPHICS MODELS FOR HYPOTHESIS 2c 
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Figure II. Model 1: Trait model for Hypothesis 2c. 

Note. e_2 = error covariance between occasions of measurement for item 1; e_3 = error 

covariance between occasions of measurement for item 4; e_4 = error covariance 

between occasions of measurement for item 5; e_6 = error covariance between occasions 

of measurement for item 6; e21 = error for item 1 at time 1; e31 = error for item 4 at time 

1; e41 = error for item 5 at time 1; e61 = error for item 6 at time 1; e22 = error for item 1 

at time 2; e32 = error for item 4 at time 2; e42 = error for item 5 at time 2; e62 = error for 
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item 6 at time 2; e23 = error for item 1 at time 3; e33 = error for item 4 at time 3; e43 = 

error for item 5 at time 3; e63 = error for item 6 at time 3; e24 = error for item 1 at time 

4; e34 = error for item 4 at time 4; e44 = error for item 5 at time 4; e64 = error for item 6 

at time 4; qpaltl = performance-avoid item 1 at time 1; qpa4tl = performance-avoid item 

4 at time 1; qpa5tl = performance-avoid item 5 at time 1; qpa6tl = performance-avoid 

item 6 at time 1; qpalt2 = performance-avoid item 1 at time 2; qpa4t2 = performance-

avoid item 4 at time 2; qpa5t2 = performance-avoid item 5 at time 2; qpa6t2 = 

performance-avoid item 6 at time 2; qpalt3 = performance-avoid item 1 at time 3; qpa4t3 

= performance-avoid item 4 at time 3; qpa5t3 = performance-avoid item 5 at time 3; 

qpa6t3 = performance-avoid item 6 at time 3; qpalt4 = performance-avoid item 1 at time 

4; qpa4t4 = performance-avoid item 4 at time 4; qpa5t4 = performance-avoid item 5 at 

time 4; qpa6t4 = performance-avoid item 6 at time 4; r_pal = path coefficient for 

performance-avoid item 1; r_pa2 = path coefficient for performance-avoid item 4; r_pa3 

= path coefficient for performance-avoid item 5; T_Perf-Av = trait performance-avoid. 
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Figure 12. Model 2: State model for Hypothesis 2c. 

Note. See note to Figure II. performance-avoid 1 = state performance-avoid at time 1; 

performance-avoid2 = state performance-avoid at time 2; performance-avoid3 = state 

performance-avoid at time 3; performance-avoid4 = state performance-avoid at time 4. 
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Figure 13. Model 3: State model with first-order autoregressive state factors for 

Hypothesis 2c. 

Note. See note to Figures II and 12. e ll = error for latent state performance-avoid at 

time 1; e_12 = error for latent state performance-avoid at time 2; e_13 = error for latent 

state performance-avoid at time 3; e_14 - error for latent state performance-avoid at time 

4. 
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Figure 14. Model 4: LTS model for Hypothesis 2c. 

Note. See note to Figures II and 12. 01 = latent occasion at time 1; 02 = latent occasion 

at time 2; 03 = latent occasion at time 3; 04 = latent occasion at time 4. 
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Figure 15. Model 5: LTS model with equality constraints on latent trait factor loadings 

for Hypothesis 2c. 

Note. See note to Figures II and 12. regt = path coefficient for latent trait. 
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Figure 16. Model 6: LTS model with first-order autoregressive latent state factors for 

Hypothesis 2c. 

Note. See note for Figures 11,12,14, and 15. 
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Figure 17. Model 7: LTS model with first-order autoregressive occasion factors for 

Hypothesis 2c. 

Note. See note for Figures II, 12,14, and 15. e_o2 = error term for latent occasion at time 

2; e_o3 = error term for latent occasion at time 3; e_o4 = error term for latent occasion at 

time 4. 
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APPENDIX J 

AMOS GRAPHICS MODELS FOR HYPOTHESIS 3a 
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Figure Jl. Model 1: Trait model for Hypothesis 3a. 

Note. e_2 = error covariance between occasions of measurement for item 2; e_3 = error 

covariance between occasions of measurement for item 3; e_4 = error covariance 

between occasions of measurement for item 4; e_6 = error covariance between occasions 

of measurement for item 6; e21 = error for item 2 at time 1; e31 = error for item 3 at time 

1; e41 = error for item 4 at time 1; e61 = error for item 6 at time 1; e22 = error for item 2 

at time 2; e32 = error for item 3 at time 2; e42 = error for item 4 at time 2; e62 = error for 

item 6 at time 2; e23 = error for item 2 at time 3; e33 = error for item 3 at time 3; e43 = 

error for item 4 at time 3; e63 = error for item 6 at time 3; e24 = error for item 2 at time 

4; e34 = error for item 3 at time 4; e44 = error for item 4 at time 4; e64 = error for item 6 
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at time 4; ql2tl = learning item 2 at time 1; ql3tl = learning item 3 at time 1; ql4tl = 

learning item 4 at time 1; ql6tl = learning item 6 at time 1; ql2t2 = learning item 2 at time 

2; ql3t2 = learning item 3 at time 2; ql4t2 = learning item 4 at time 2; ql6t2 = learning 

item 6 at time 2; ql2t3 = learning item 2 at time 3; ql3t3 = learning item 3 at time 3; ql4t3 

= learning item 4 at time 3; ql6t3 = learning item 6 at time 3; ql2t4 = learning item 2 at 

time 4; ql3t4 = learning item 3 at time 4; ql4t4 = learning item 4 at time 4; ql6t4 = 

learning item 6 at time 4; r_12 = path coefficient for learning item 2; r_13 = path 

coefficient for learning item 3; r_14 = path coefficient for learning item 4; T learning = 

trait learning. 
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Figure J2. Model 2: State model for Hypothesis 3a. 

Note. See note to Figure Jl. learning 1 = state learning at time 1; learning2 = state 

learning at time 2; learning3 = state learning at time 3; learning4 = state learning at time 

4. 
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Figure J3. Model 3: State model with first-order autoregressive state factors for 

Hypothesis 3a. 

Note. See note to Figures J1 and J2. e ll = error for latent state learning at time 1; e_12 = 

error for latent state learning at time 2; e l3 = error for latent state learning at time 3; e_14 

= error for latent state learning at time 4. 
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Figure J4. Model 4: LTS model for Hypothesis 3a. 

Note. See note to Figures J1 and J2. 01 = latent occasion at time 1; 02 = latent occasion 

at time 2; 03 = latent occasion at time 3; 04 = latent occasion at time 4. 
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Figure J5. Model 5: LTS model with equality constraints on latent trait factor loadings 

for Hypothesis 3 a. 

Note. See note to Figures Jl, J2 and J4. reg t = path coefficient for latent trait. 
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Figure J6. Model 6: LTS model with first-order autoregressive latent state factors for 

Hypothesis 3a. 

Note. See note for Figures J1, J2, J4, and J5. 
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Figure J7. Model 7: LTS model with first-order autoregressive occasion factors for 

Hypothesis 3a. 

Note. See note for Figures Jl, J2, 54, and J5. e_o2 = error term for latent occasion at time 

2; e_o3 = error term for latent occasion at time 3; e_o4 = error term for latent occasion at 

time 4. 
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APPENDIX K 

AMOS GRAPHICS MODELS FOR HYPOTHESIS 3b 
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Figure Kl. Model 1: Trait model for Hypothesis 3b. 

Note. e_2 = error covariance between occasions of measurement for item 3; e_3 = error 

covariance between occasions of measurement for item 4; e_4 = error covariance 

between occasions of measurement for item 5; e_6 = error covariance between occasions 

of measurement for item 6; e21 = error for item 3 at time 1; e31 = error for item 4 at time 

1; e41 = error for item 5 at time 1; e61 = error for item 6 at time 1; e22 = error for item 3 

at time 2; e32 = error for item 4 at time 2; e42 = error for item 5 at time 2; e62 = error for 

item 6 at time 2; e23 = error for item 3 at time 3; e33 = error for item 4 at time 3; e43 = 

error for item 5 at time 3; e63 = error for item 6 at time 3; e24 = error for item 3 at time 

4; e34 = error for item 4 at time 4; e44 = error for item 5 at time 4; e64 = error for item 6 
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at time 4; qpp3tl = performance-prove item 3 at time 1; qpp4tl = performance-prove 

item 4 at time 1; qpp5tl = performance-prove item 5 at time 1; qpp6tl = performance-

prove item 6 at time 1; qpp3t2 = performance-prove item 3 at time 2; qpp4t2 = 

performance-prove item 4 at time 2; qpp5t2 = performance-prove item 5 at time 2; 

qpp6t2 = performance-prove item 6 at time 2; qpp3t3 = performance-prove item 3 at time 

3; qpp4t3 = performance-prove item 4 at time 3; qpp5t3 = performance-prove item 5 at 

time 3; qpp6t3 = performance-prove item 6 at time 3; qpp3t4 = performance-prove item 3 

at time 4; qpp4t4 = performance-prove item 4 at time 4; qpp5t4 = performance-prove 

item 5 at time 4; qpp6t4 = performance-prove item 6 at time 4; r_J2 = path coefficient for 

performance-prove item 3; r 13 = path coefficient for performance-prove item 4; r 14 = 

path coefficient for performance-prove item 5; T_perf-pr = trait performance-prove. 
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Figure K2. Model 2: State model for Hypothesis 3b. 

Note. See note to Figure Kl. r_ppl = path coefficient for performance-prove item 3; 

r_pp2 = path coefficient for performance-prove item 4; r_pp3 = path coefficient for 

performance-prove item 5; perf-prl = state performance-prove at time 1; perf-pr2 = state 

performance-prove at time 2; perf-pr3 = state performance-prove at time 3; perf-pr4 = 

state performance-prove at time 4. 
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Figure K3. Model 3: State model with first-order autoregressive state factors for 

Hypothesis 3b. 

Note. See note to Figures K1 and K2. e_ppl = error for latent state performance-prove at 

time 1; e_pp2 = error for latent state performance-prove at time 2; e_pp3 = error for 

latent state performance-prove at time 3; e_pp4 = error for latent state performance-prove 

at time 4. 
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Figure K4. Model 4: LTS model for Hypothesis 3b. 

Note. See note to Figures K1 and K2. 01 = latent occasion at time 1; 02 = latent 

occasion at time 2; 03 = latent occasion at time 3; 04 = latent occasion at time 4. 
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Figure K5. Model 5: LTS model with equality constraints on latent trait factor loadings 

for Hypothesis 3b. 

Note. See note to Figures Kl, K2 and K4. reg t = path coefficient for latent trait. 
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Figure K6. Model 6: LTS model with first-order autoregressive latent state factors for 

Hypothesis 3b. 

Note. See note for Figures Kl, K2, K4, and K5. 
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Figure K7. Model 7: LTS model with first-order autoregressive occasion factors for 

Hypothesis 3b. 

Note. See note for Figures Kl, K2, K4, and K5. e_o2 = error term for latent occasion at 

time 2; e_o3 = error term for latent occasion at time 3; e_o4 = error term for latent 

occasion at time 4. 
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APPENDIX L 

AMOS GRAPHICS MODELS FOR HYPOTHESIS 3c 
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Figure LI. Model 1: Trait model for Hypothesis 3c. 

Note. e_2 - error covariance between occasions of measurement for item 1; e_3 = error 

covariance between occasions of measurement for item 4; e_4 = error covariance 

between occasions of measurement for item 5; e 6 = error covariance between occasions 

of measurement for item 6; e21 = error for item 1 at time 1; e31 = error for item 4 at time 

1; e41 = error for item 5 at time 1; e61 = error for item 6 at time 1; e22 = error for item 1 

at time 2; e32 = error for item 4 at time 2; e42 = error for item 5 at time 2; e62 = error for 
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item 6 at time 2; e23 = error for item 1 at time 3; e33 = error for item 4 at time 3; e43 = 

error for item 5 at time 3; e63 = error for item 6 at time 3; e24 = error for item 1 at time 

4; e34 = error for item 4 at time 4; e44 = error for item 5 at time 4; e64 = error for item 6 

at time 4; qpaltlR = performance-avoid item 1 (reverse scored) at time 1; qpa4tl = 

performance-avoid item 4 at time 1; qpa5tl = performance-avoid item 5 at time 1; qpa6tl 

= performance-avoid item 6 at time 1; qpalt2R = performance-avoid item 1 (reverse 

scored) at time 2; qpa4t2 = performance-avoid item 4 at time 2; qpa5t2 = performance-

avoid item 5 at time 2; qpa6t2 = performance-avoid item 6 at time 2; qpalt3R = 

performance-avoid item 1 (reverse scored) at time 3; qpa4t3 = performance-avoid item 4 

at time 3; qpa5t3 = performance-avoid item 5 at time 3; qpa6t3 = performance-avoid item 

6 at time 3; qpalt4R = performance-avoid item 1 (reverse scored) at time 4; qpa4t4 = 

performance-avoid item 4 at time 4; qpa5t4 = performance-avoid item 5 at time 4; qpa6t4 

= performance-avoid item 6 at time 4; r_pal = path coefficient for performance-avoid 

item 1; r_pa2 = path coefficient for performance-avoid item 4; rjpa3 = path coefficient 

for performance-avoid item 5; T_Perf-Av = trait performance-avoid. 
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Figure L2. Model 2: State model for Hypothesis 3c. 

Note. See note to Figure LI. performance-avoid 1 = state performance-avoid at time 1; 

performance-avoid2 = state performance-avoid at time 2; performance-avoid3 = state 

performance-avoid at time 3; performance-avoid4 = state performance-avoid at time 4. 
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Figure L3. Model 3: State model with first-order autoregressive state factors for 

Hypothesis 3c. 

Note. See note to Figures LI and L2. e ll = error for latent state performance-avoid at 

time 1; e_12 = error for latent state performance-avoid at time 2; e 13 = error for latent 

state performance-avoid at time 3; e_14 = error for latent state performance-avoid at time 

4. 
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Figure L4. Model 4: LTS model for Hypothesis 3c. 

Note. See note to Figures LI and L2. 01 = latent occasion at time 1; 02 = latent 

occasion at time 2; 03 = latent occasion at time 3; 04 = latent occasion at time 4. 
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Figure L5. Model 5: LTS model with equality constraints on latent trait factor loadings 

for Hypothesis 3c. 

Note. See note to Figures LI, L2 and L4. regt = path coefficient for latent trait. 
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Figure L6. Model 6: LTS model with first-order autoregressive latent state factors for 

Hypothesis 3c. 

Note. See note for Figures LI, L2, L4, and L5. 
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Figure L7. Model 7: LTS model with first-order autoregressive occasion factors for 

Hypothesis 3c. 

Note. See note for Figures LI, L2, L4, and L5. e_o2 = error term for latent occasion at 

time 2; e_o3 = error term for latent occasion at time 3; e_o4 = error term for latent 

occasion at time 4. 
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APPENDIX M 

CONFIRMATORY FACTOR ANALYSIS GOODNESS-OF-FIT INDICATORS 

OF MODELS FOR THE GENERAL TRAIT LEARNING 

GOAL ORIENTATION SCALE FOR FOUR OCCASIONS (N = 244) 

Model ? # p RMSEA CFI TU 

Time 1 

9 <0.001 0.193 0.83 0.61 

5 <0.001 0.211 0.88 0.63 

2 0.30 0.030 1.00 0.99 

Time 2 

<0.001 0.166 0.83 0.60 

<0.001 0.161 0.90 0.70 

0.32 0.023 1.00 1.00 

Time 3 

1.6-item 86.12 9 <0.001 

2.5-item 49.88 5 <0.001 

3.4-item 28.35 2 <0.001 

Time 4 

1.6-item 66.05 9 <0.001 0.160 0.90 0.77 

2. 5-item 23.96 5 <0.001 0.123 0.96 0.89 

3. 4-item 0.83 2 0.66 0.000 1.00 1.01 

Note. RMSEA = root mean square error of approximation; CFI = Comparative Fit Index; 

TLI = Tucker-Lewis Index. 

1.6-item 92.90 

2. 5-item 60.39 

3.4-item 2.44 

1.6-item 70.71 9 

2.5-item 37.08 5 

3.4-item 2.27 2 

0.186 0.85 0.66 

0.190 0.90 0.70 

0.230 0.93 0.65 
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APPENDIX N 

CONFIRMATORY FACTOR ANALYSIS GOODNESS-OF-FIT INDICATORS 

OF MODELS FOR THE GENERAL TRAIT PERFORMANCE-PROVE 

GOAL ORIENTATION SCALE FOR FOUR OCCASIONS (N = 244) 

Model j? Tf p RMSEA CFI TLI 

Time 1 

I.6-item 44.60 9 <0.001 

2.5-item 35.44 5 <0.001 

3.4-item 3.79 2 0.15 

Time 2 

<0.001 0.121 0.92 0.81 

<0.001 0.109 0.96 0.87 

0.74 0.000 1.00 1.03 

Time 3 

<0.001 0.140 0.92 0.82 

<0.001 0.166 0.93 0.78 

0.07 0.081 0.99 0.95 

Time 4 

1.6-item 84.28 9 <0.001 0.183 0.88 0.72 

2.5-item 39.18 5 <0.001 0.166 0.93 0.80 

3.4-item 5.25 2 0.07 0.081 0.99 0.96 

Note. RMSEA = root mean square error of approximation; CFI = Comparative Fit Index; 

TLI = Tucker-Lewis Index. 

0.126 0.93 0.83 

0.156 0.93 0.80 

0.060 1.00 0.97 

1.6-item 41.96 9 

2.5-item 19.69 5 

3.4-item 0.60 2 

1.6-item 52.81 9 

2.5-item 39.11 5 

3.4-item 5.30 2 
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APPENDIX O 

CONFIRMATORY FACTOR ANALYSIS GOODNESS-OF-FIT INDICATORS 

OF MODELS FOR THE GENERAL TRAIT PERFORMANCE-AVOID 

GOAL ORIENTATION SCALE FOR FOUR OCCASIONS (N = 244) 

Model ? df p RMSEA CFI TU 

Time 1 

9 0.06 0.058 0.98 0.94 

5 0.07 0.064 0.98 0.95 

2 0.23 0.044 1.00 0.98 

Time 2 

0.01 0.073 0.96 0.91 

0.41 0.004 1.00 1.00 

0.83 0.000 1.00 1.04 

Time 3 

1.6-item 24.00 9 0.00 

2.5-item 12.90 5 0.02 

3.4-item 2.96 2 0.23 

Time 4 

1.6-item 15.15 9 0.09 0.052 0.99 0.97 

2.5-item 10.19 5 0.07 0.065 0.99 0.97 

3.4-item 0.96 2 0.62 0.000 1.00 1.01 

Note. RMSEA = root mean square error of approximation; CFI = Comparative Fit Index; 

TLI = Tucker-Lewis Index. 

1.6-item 16.54 

2.5-item 10.09 

3.4-item 2.96 

1.6-item 20.90 9 

2.5-item 5.02 5 

3.4-item 0.37 2 

0.082 0.96 0.92 

0.080 0.98 0.94 

0.044 1.00 0.99 
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APPENDIX P 

CONFIRMATORY FACTOR ANALYSIS GOODNESS-OF-FIT INDICATORS 

OF MODELS FOR THE DOMAIN-SPECIFIC TRAIT LEARNING 

GOAL ORIENTATION SCALE FOR FOUR OCCASIONS (N = 244) 

Model df RMSEA CFI TLI 

Time 1 

1. 6-item 

2. 5-item 

3. 4-item 

69.56 

39.07 

2.06 

<0.001 0.164 

<0.001 0.165 

0.36 0.011 

0.88 

0.92 

1.00 

0.72 

0.76 

1.00 

Time 2 

1. 6-item 

2. 5-item 

3. 4-item 

60.50 

43.87 

0.83 

<0.001 0.152 

<0.001 0.177 

0.66 0.000 

0.88 

0.90 

1.00 

0.72 

0.70 

1.02 

Time 3 

1.6-item 

2. 5-item 

3.4-item 

48.18 

29.38 

3.00 

<0.001 0.132 

<0.001 0.140 

0.22 0.045 

0.92 

0.94 

1.00 

0.81 

0.82 

0.98 

Time 4 

1. 6-item 

2. 5-item 

3. 4-item 

86.35 

54.34 

6.26 

<0.001 0.186 

<0.001 0.199 

0.04 0.092 

0.87 

0.90 

0.99 

0.69 

0.71 

0.95 

Note. RMSEA = root mean square error of approximation; CFI = Comparative Fit Index; 

TLI - Tucker-Lewis Index. 
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APPENDIX Q 

CONFIRMATORY FACTOR ANALYSIS GOODNESS-OF-FIT INDICATORS 

OF MODELS FOR THE DOMAIN-SPECIFIC TRAIT PERFORMANCE-PROVE 

GOAL ORIENTATION SCALE FOR FOUR OCCASIONS (N = 244) 

Model j? # P RMSEA CFI TO 

Time 1 

9 0.01 0.077 0.97 0.94 

5 0.002 0.107 0.90 0.90 

2 0.34 0.017 1.00 1.00 

______ 

<0.001 0.118 0.93 0.83 

<0.001 0.118 0.95 0.85 

0.001 0.154 0.95 0.77 

Time 3 

1.6-item 55.80 9 <0.001 

2.5-item 18.42 5 0.002 

3.4-item 6.42 2 0.04 

Time 4 

1.6-item 43.50 9 <0.001 0.124 0.92 0.81 

2.5-item 19.24 5 0.002 0.107 0.96 0.87 

3.4-item 1.63 2 0.44 0.000 1.00 1.01 

Note. RMSEA = root mean square error of approximation; CFI = Comparative Fit Index; 

TLI = Tucker-Lewis Index. 

1.6-item 22.16 

2.5-item 19.37 

3.4-item 2.14 

1.6-item 40.17 9 

2.5-item 22.19 5 

3.4-item 13.76 2 

0.145 0.92 0.81 

0.104 0.97 0.91 

0.094 0.99 0.93 
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APPENDIX R 

CONFIRMATORY FACTOR ANALYSIS GOODNESS-OF-FIT INDICATORS 

OF MODELS FOR THE DOMAIN-SPECIFIC TRAIT PERFORMANCE-AVOID 

GOAL ORIENTATION SCALE FOR FOUR OCCASIONS (N = 244) 

Model x2 df p RMSEA CFI TU 

Time 1 

9 <0.001 0.127 0.92 0.81 

5 <0.001 0.126 0.95 0.85 

2 0.15 0.061 0.99 0.97 

Time 2 

<0.001 0.141 0.86 0.66 

<0.001 0.130 0.92 0.75 

0.81 0.000 1.00 1.05 

Time 3 

<0.001 0.125 0.92 0.81 

0.02 0.081 0.98 0.93 

0.20 0.106 0.98 0.89 

Time 4 

1.6-item 13.51 9 0.14 0.045 0.99 0.98 

2.5-item 3.84 5 0.57 0.000 1.00 1.01 

3.4-item 0.16 2 0.92 0.000 1.00 1.03 

Note. RMSEA = root mean square error of approximation; CFI = Comparative Fit Index; 

TLI = Tucker-Lewis Index. 

1.6-item 45.08 

2.5-item 24.64 

3.4-item 3.86 

1.6-item 53.51 9 

2.5-item 25.99 5 

3.4-item 0.43 2 

1.6-item 43.77 9 

2.5-item 13.11 5 

3.4-item 7.58 2 
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APPENDIX S 

CONFIRMATORY FACTOR ANALYSIS GOODNESS-OF-FIT INDICATORS 

OF MODELS FOR THE STATE LEARNING 

GOAL ORIENTATION SCALE FOR FOUR OCCASIONS (N = 244) 

Model x2 If p RMSEA CFI TU 

Time 1 

1.6-item 92.90 9 <0.001 

2.5-item 60.39 5 <0.001 

3.4-item 2.44 2 0.30 

Time 2 

<0.001 0.208 0.81 0.55 

<0.001 0.228 0.86 0.57 

0.05 0.090 0.99 0.94 

Time 3 

1.6-item 67.23 9 <0.001 0.161 

2.5-item 45.97 5 <0.001 0.181 

3.4-item 2.68 2 0.26 0.037 

Time 4 

1.6-item 104.78 9 <0.001 0.207 0.84 0.62 

2.5-item 62.97 5 <0.001 0.216 0.89 0.66 

3.4-item 14.15 2 0.001 0.156 0.97 0.86 

0.193 0.83 0.61 

0.211 0.88 0.63 

0.030 1.00 0.99 

1.6-item 105.83 9 

2.5-item 69.91 5 

3.4-item 6.00 2 

0.88 0.72 

0.91 0.72 

1.00 0.99 

Note. RMSEA = root mean square error of approximation; CFI = Comparative Fit Index; 

TLI = Tucker-Lewis Index. 
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APPENDIX T 

CONFIRMATORY FACTOR ANALYSIS GOODNESS-OF-FIT INDICATORS 

OF MODELS FOR THE STATE PERFORMANCE-PROVE 

GOAL ORIENTATION SCALE FOR FOUR OCCASIONS (N = 244) 

Model x2 df p RMSEA CFI TU 

Time 1 

9 <0.001 0.123 0.94 0.86 

5 <0.001 0.146 0.95 0.85 

2 0.54 0.000 1.00 1.01 

Time 2 

<0.001 0.154 0.89 0.75 

<0.001 0.184 0.91 0.72 

0.84 0.000 1.00 1.03 

Time 3 

1.6-item 56.16 9 <0.001 

2.5-item 52.15 5 <0.001 

3.4-item 4.11 2 0.13 

Time 4 

1.6-item 37.85 9 <0.001 0.113 0.93 0.83 

2.5-item 25.31 5 <0.001 0.128 0.94 0.83 

3.4-item 7.11 2 0.03 0.101 0.98 0.89 

Note. RMSEA = root mean square error of approximation; CFI = Comparative Fit Index; 

TLI = Tucker-Lewis Index. 

1.6-item 42.68 

2.5-item 31.44 

3.4-item 1.22 

1.6-item 62.25 9 

2.5-item 47.25 5 

3.4-item 0.36 2 

0.145 0.92 0.80 

0.195 0.91 0.74 

0.065 0.99 0.97 
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APPENDIX U 

CONFIRMATORY FACTOR ANALYSIS GOODNESS-OF-FIT INDICATORS 

OF MODELS FOR THE STATE PERFORMANCE-AVOID 

GOAL ORIENTATION SCALE FOR FOUR OCCASIONS (N = 244) 

Model j? # p RMSEA CFI TU 

Time 1 

9 <0.001 0.176 0.87 0.70 

5 <0.001 0.156 0.93 0.80 

2 0.25 0.040 1.00 0.99 

Time 2 

<0.001 0.130 0.91 0.79 

0.002 0.107 0.96 0.88 

0.84 0.000 1.00 1.00 

Time 3 

1.6-item 35.61 9 <0.001 

2.5-item 21.84 5 0.001 

3.4-item 6.24 2 0.13 

Time 4 

1.6-item 47.41 9 <0.001 0.131 0.93 0.83 

2.5-item 24.03 5 <0.001 0.124 0.96 0.89 

3.4-item 3.11 2 0.03 0.047 1.00 0.99 

Note. RMSEA = root mean square error of approximation; CFI = Comparative Fit Index; 

TLI = Tucker-Lewis Index. 

1.6-item 78.56 

2.5-item 35.13 

3.4-item 2.78 

1.6-item 46.65 9 

2.5-item 19.23 5 

3.4-item 1.86 2 

0.109 0.95 0.87 

0.116 0.96 0.89 

0.092 0.99 0.94 
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APPENDIX V 

FACTOR LOADINGS FOR THE 4-ITEM GENERAL TRAIT 

GOAL ORIENTATION SCALES FOR FOUR OCCASIONS OF MEASUREMENT 

Item number Time 1 Time 2 Time 3 Time 4 

Learning 

2 0.77 0.67 0.81 0.87 

3 0.61 0.50 0.72 0.70 

4 0.81 0.84 0.81 0.87 

6 0.83 0.81 0.75 0.85 

Performance-Prove 

1 0.85 0.84 0.88 0.86 

2 0.69 0.60 0.50 0.74 

3 0.65 0.63 0.72 0.75 

4 0.80 0.84 0.83 0.90 

Performance-Avoid 

2 0.57 0.52 0.61 0.75 

4 0.55 0.50 0.63 0.74 

5 0.78 0.78 0.85 0.95 

6 0.81 0.88 0.87 0.85 

Note. All coefficients are significant at/7 < .001. 
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APPENDIX W 

FACTOR LOADINGS FOR THE 4-ITEM DOMAIN-SPECIFIC TRAIT 

GOAL ORIENTATION SCALES FOR FOUR OCCASIONS OF MEASUREMENT 

Item number Time 1 Time 2 Time 3 Time 4 

Learning 

2 0.74 0.73 0.82 0.83 

3 0.58 0.65 0.63 0.65 

4 0.78 0.81 0.83 0.90 

6 0.80 0.82 0.70 0.90 

Performance-Prove 

1 0.74 0.75 0.84 0.78 

2 0.56 0.61 0.53 0.64 

3 0.74 0.70 0.76 0.72 

4 0.81 0.80 0.81 0.80 

Performance-Avoid 

1 0.58 0.40 0.58 0.63 

4 0.52 0.47 0.53 0.77 

5 0.87 0.78 0.87 0.91 

6 0.82 0.85 0.82 0.88 

Note. All coefficients are significant at p < .001. 
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APPENDIX X 

FACTOR LOADINGS FOR THE 4-ITEM STATE 

GOAL ORIENTATION SCALES FOR FOUR OCCASIONS OF MEASUREMENT 

Item number Time 1 Time 2 Time 3 Time 4 

Learning 

2 0.77 0.71 0.80 0.85 

3 0.61 0.56 0.66 0.61 

4 0.81 0.80 0.82 0.85 

6 0.83 0.93 0.78 0.93 

Performance-Prove 

3 0.87 0.84 0.82 0.76 

4 0.75 0.65 0.71 0.67 

5 0.80 0.80 0.81 0.79 

6 0.68 0.75 0.76 0.74 

Performance-Avoid 

1 0.63 0.50 0.54 0.55 

4 0.52 0.53 0.53 0.74 

5 0.84 0.90 0.90 0.94 

6 0.90 0.86 0.89 0.89 

Note. All coefficients are significant at/? < .001. 
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APPENDIX Y 

CRONBACH'S COEFFICIENT ALPHA FOR GENERAL TRAIT 

GOAL ORIENTATION SCALES AT FOUR OCCASIONS OF MEASUREMENT 

Scale a 95 % CI 

Learning, Time 1 0.84 [0.80, 0.87] 

Learning, Time 2 0.79 [0.75, 0.83] 

Learning, Time 3 0.85 [0.82, 0.88] 

Learning, Time 4 0.89 [0.87, 0.91] 

Performance-Prove, Time 1 0.83 [0.79, 0.86] 

Performance-Prove, Time 2 0.82 [0.76, 0.85] 

Performance-Prove, Time 3 0.82 [0.78, 0.85] 

Performance-Prove, Time 4 0.89 [0.86, 0.91] 

Performance-Avoid, Time 1 0.77 [0.71,0.81] 

Performance-A void, Time 2 0.75 [0.70, 0.80] 

Performance-A void, Time 3 0.82 [0.78, 0.86] 

Performance-A void, Time 4 0.89 [0.86, 0.91] 

Note. CI = confidence interval. 
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APPENDIX Z 

CRONBACH'S COEFFICIENT ALPHA FOR DOMAIN-SPECIFIC TRAIT 

GOAL ORIENTATION SCALES AT FOUR OCCASIONS OF MEASUREMENT 

Scale a 95 % CI 

Learning, Time 1 0.81 [0.77, 0.85] 

Learning, Time 2 0.83 [0.80, 0.87] 

Learning, Time 3 0.83 [0.80, 0.87] 

Learning, Time 4 0.89 [0.86, 0.91] 

Performance-Prove, Time 1 0.80 [0.76, 0.84] 

Performance-Prove, Time 2 0.81 [0.77, 0.84] 

Performance-Prove, Time 3 0.82 [0.79, 0.86] 

Performance-Prove, Time 4 0.82 [0.78, 0.86] 

Performance-A void, Time 1 0.78 [0.73, 0.82] 

Performance-A void, Time 2 0.71 [0.64, 0.76] 

Performance-A void, Time 3 0.79 [0.74, 0.83] 

Performance-A void, Time 4 0.87 [0.84, 0.89] 

Note. CI = confidence interval. 
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APPENDIX AA 

CRONBACH'S COEFFICIENT ALPHA FOR STATE 

GOAL ORIENTATION SCALES AT FOUR OCCASIONS OF MEASUREMENT 

Scale a 95 % CI 

Learning, Time 1 0.84 [0.80, 0.87] 

Learning, Time 2 0.84 [0.80,0.87] 

Learning, Time 3 0.85 [0.82, 0.88] 

Learning, Time 4 0.88 [0.86, 0.90] 

Performance-Prove, Time 1 0.85 [0.82, 0.88] 

Performance-Prove, Time 2 0.84 [0.81,0.87] 

Performance-Prove, Time 3 0.86 [0.83, 0.89] 

Performance-Prove, Time 4 0.83 [0.79, 0.86] 

Performance-Avoid, Time 1 0.81 [0.76, 0.84] 

Performance-A void, Time 2 0.78 [0.73, 0.82] 

Performance-A void, Time 3 0.80 [0.76, 0.84] 

Performance-Avoid, Time 4 0.86 [0.83, 0.88] 

Note. CI = confidence interval. 
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APPENDIX AB 

GOODNESS-OF-FIT STATISTICS FOR TESTS 

OF MEASUREMENT EQUIVALENCE/INVARIANCE: 

GENERAL TRAIT LEARNING GOAL ORIENTATION SCALE 

Comparative 

Model description model X df A^2 Adf CFI ACFI 

1. Configural model - -- 48.369 14 - -- 0.973 

equal factor structure 

2. Equality of factor 2 versus 1 54.449 17 6.080 3 0.970 -0.003 

loadings 

3. Equality of factor 3 versus 1 69.446 20 21.077** 6 0.965 -0.008 

variance-covariance 

matrices 

_  *  1  "  1  1  1 1  

Note. Ax = difference in x values between models; A df = difference in number of 

degrees of freedom between models; ACFI = difference in CFI values between models. 

**/><0.01. 
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APPENDIX AC 

GOODNESS-OF-FIT STATISTICS FOR TESTS 

OF MEASUREMENT EQUIVALENCE/INVARIANCE: 

GENERAL TRAIT PERFORMANCE-PROVE GOAL ORIENTATION SCALE 

Comparative 

Model description model x2 df Ax2 Adf CFI ACFI 

1. Configural model - equal -- 23.338 14 -- -- 0.993 

factor structure 

2. Equality of factor 2 versus 1 27.122 17 3.784 3 0.993 0 

loadings 

3. Equality of factor 3 versus 1 28.184 20 4.846 6 0.993 0 

variance-covariance 

matrices 

Note. Ax = difference in x values between models; A df = difference in number of 

degrees of freedom between models; ACFI - difference in CFI values between models. 
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APPENDIX AD 

GOODNESS-OF-FIT STATISTICS FOR TESTS 

OF MEASUREMENT EQUIVALENCE/INVARIANCE: 

GENERAL TRAIT PERFORMANCE-AVOID GOAL ORIENTATION SCALE 

Comparative 

Model description model y? df AX &df CFI ACFI 

1. Configural model - — 16.342 14 -- - 0.998 

equal factor structure 

2. Equality of factor 2 versus 1 16.888 17 0.546 3 1.000 0.002 

loadings 

3. Equality of factor 3 versus 1 27.916 20 11.574 6 0.993 -0.005 

variance-covariance 

matrices 

Note. = difference in x values between models; A df = difference in number of 

degrees of freedom between models; ACFI = difference in CFI values between models. 
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APPENDIX AE 

GOODNESS-OF-FIT STATISTICS FOR TESTS 

OF MEASUREMENT EQUIVALENCE/IN VARIANCE: 

DOMAIN-SPECIFIC TRAIT LEARNING GOAL ORIENTATION SCALE 

Comparative 

Model description model df A^2 Adf CFI ACFI 

1. Configural model - equal -- 10.125 14 — — 1.000 

factor structure 

2. Equality of factor 2 versus 1 10.370 17 0.245 3 1.000 0 

loadings 

3. Equality of factor 3 versus 1 17.765 20 7.640 6 1.000 0 

variance-covariance 

matrices 

* 
Note. Ax = difference in % values between models; A df = difference in number of 

degrees of freedom between models; ACFI = difference in CFI values between models. 
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APPENDIX AF 

GOODNESS-OF-FIT STATISTICS FOR TESTS 

OF MEASUREMENT EQUIVALENCE/INVARIANCE: 

DOMAIN-SPECIFIC TRAIT PERFORMANCE-PROVE 

GOAL ORIENTATION SCALE 

Comparative 

Model description model x2 # AX Adf CFI ACFI 

1. Configural model - equal — 40.379 14 — -- 0.975 

factor structure 

2. Equality of factor 2 versus 1 40.699 17 0.320 3 0.977 0.002 

loadings 

3. Equality of factor 3 versus 1 41.664 20 1.285 6 0.979 0.004 

variance-covariance 

matrices 

Note. Ax = difference in x values between models; Adf - difference in number of 

degrees of freedom between models; ACFI = difference in CFI values between models. 
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APPENDIX AG 

GOODNESS-OF-FIT STATISTICS FOR TESTS 

OF MEASUREMENT EQUIVALENCE/IN VARIANCE: 

DOMAIN-SPECIFIC TRAIT PERFORMANCE-AVOID 

GOAL ORIENTATION SCALE 

Comparative 

Model description model X 4f A^2 Adf CFI ACFI 

1. Configural model - — 20.255 14 -- — 0.994 

equal factor structure 

2. Equality of factor 2 versus 1 21.029 17 0.774 3 0.996 0.002 

loadings 

3. Equality of factor 3 versus 1 30.761 20 10.506 6 0.989 -0.005 

variance-covariance 

matrices 

^ , - — — 
Note. Ax = difference in x values between models; A.df = difference in number of 

degrees of freedom between models; ACFI = difference in CFI values between models. 
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APPENDIX AH 

GOODNESS-OF-FIT STATISTICS FOR TESTS 

OF MEASUREMENT EQUIVALENCE/INVARIANCE: 

STATE LEARNING GOAL ORIENTATION SCALE 

Comparative 

Model description model £ df A)f Adf CFI ACFI 

1. Configural model - equal -- 32.295 14 -- -- 0.987 

factor structure 

2. Equality of factor 2 versus 1 32.790 17 0.495 3 0.988 0.001 

loadings 

3. Equality of factor 3 versus 1 34.038 20 1.743 6 0.990 0.003 

variance-covariance 

matrices 

Note. Ax = difference in % values between models; A df - difference in number of 

degrees of freedom between models; ACFI = difference in CFI values between models. 
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APPENDIX AI 

GOODNESS-OF-FIT STATISTICS FOR TESTS 

OF MEASUREMENT EQUIVALENCE/INVARIANCE: 

STATE PERFORMANCE-PROVE GOAL ORIENTATION SCALE 

Comparative 

Model description model x df A%2 Adf CFI ACFI 

1. Configural model - equal — 10.281 14 -- -- 1.000 

factor structure 

2. Equality of factor 2 versus 1 11.659 17 1.378 3 1.000 0 

loadings 

3. Equality of factor 3 versus 1 15.573 20 5.292 6 1.000 0 

variance-covariance 

matrices 

2 — ""J Note. Ax - difference in x values between models; A df = difference in number of 

degrees of freedom between models; ACFI = difference in CFI values between models. 
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APPENDIX AJ 

GOODNESS-OF-FIT STATISTICS FOR TESTS 

OF MEASUREMENT EQUIVALENCE/INVARIANCE: 

STATE PERFORMANCE-A VOID GOAL ORIENTATION SCALE 

Comparative 

Model description model "£ df A^2 ts.df CFI ACFI 

1. Configural model - ~ 22.628 14 — -- 0.992 

equal factor structure 

2. Equality of factor 2 versus 1 25.515 17 2.887 3 0.992 0 

loadings 

3. Equality of factor 3 versus 1 30.461 20 7.833 6 0.991 -0.001 

variance-covariance 

matrices 

Note. A% = difference in x values between models; A df = difference in number of 

degrees of freedom between models; ACFI = difference in CFI values between models. 
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APPENDIX AK 

ESTIMATED MEANS, STANDARD DEVIATIONS, 

AND INTERCORRELATIONS FOR THE STUDY VARIABLES 

1 2 3 4 5 6 7 

1. Sex - -

2. Age .11 — 

3. Year .09 72*** — 

4. GTLl .00 17** .11 ~ 

5. GTL2 .04 .14* .12 66*** — 

6. GTL3 .07 .02 .04 66*** 68*** — 

7. GTL4 .08 .18** .15* 67*** 67*** 7 3 * * *  — 

8. GTPP1 24*** .09 .06 .10 .08 .05 .09 

9. GTPP2 25*** .05 .04 .13 .10 .06 .10 

10. GTPP3 24*** -.04 -.02 .14* .06 .14* .18** 

11. GTPP4 .13 -.05 .00 .15* .10 .15* .12 

12. GTPA1 -.22*** -.05 .04 -.01 -.09 -.10 . 19** 

13. GTPA2 _ 24*** -.04 .07 -.02 .08 .00 -.05 

14. GTPA3 _ 28*** -.05 .04 .04 -.01 .06 -.01 

15. GTPA4 _ 2g*** -.07 .00 -.03 -.07 -.03 -.02 

16. DSTL1 -.04 .14* .11 83*** 6i*** 65*** 67*** 

17. DSTL2 .01 .11 .07 .68*** 8i*** .70 69*** 

18. DSTL3 .05 .03 .04 58*** .65*** 88*** .66*** 
19. DSTL4 .05 .15* .11 65*** 67*** 7 5 * * *  90*** 
20. DSTPP1 .16* .04 .09 .14* .08 .07 .10 
21. DSTPP2 .10 -.01 .04 25*** 24*** .16* .21** 

22. DSTPP3 .14* -.03 .02 19** .18** 20** .22** 

23. DSTPP4 .16* -.05 .04 19** .14* .20** 19** 

24. DSTPA1 -  3 3 * * *  -.08 .05 -.04 -.05 -.12 -.17* 

25. DSTPA2 -.20** -.01 .04 .07 .10 .12 .00 

26. DSTPA3 - 25*** .02 .03 .14* .12 .16* .07 

27. DSTPA4 .32*** .02 .01 .03 .00 -.04 .09 

28. SL1 -.10 .11 .08 78*** 58*** 64*** .68*** 
29. SL2 -.05 .05 -.02 5 4 * * *  .70 6i*** 50*** 

30. SL3 .03 .05 .03 64*** .55*** 80*** 7 7 * * *  

31. SL4 -.02 .17* .09 .66*** 63*** .70 .86*** 
32. SPP1 .02 -.04 .04 .09 .07 .04 .02 
33. SPP2 .07 -.05 .07 21** .20** .16* .14* 
34. SPP3 .07 -.05 .00 .17* .15* .15* .18** 

35. SPP4 .04 -.10 -.04 .15* .09 .14* .17* 
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8 9 10 11 12 13 14 15 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. j j * * *  — 

10. 7 7 * * *  gQ*** — 

11. 7^*** 7 5 * * *  g4*** - -

12. -.04 -.11 -.12 -.04 — 

13. -.04 -.05 -.09 -.01 .62*** — 

14. .05 .02 -.02 .06 .68*** 65*** — 

15. -.04 -.06 -.03 .00 .62*** .63*** .82*** - -

16. .02 .06 .14* .20** -.06 .04 .04 -.01 

17. .03 .07 .07 .12 -.02 .09 .02 -.09 

18. .03 .09 .07 .14 -.03 .07 .14 -.01 

19. .05 .07 .13 .13 -.16* -.03 -.02 -.06 

20. 72*** 51 *** .62*** 51*** .01 -.02 .03 -.01 

21. .60*** • 7 7 * * *  7 J *** .68*** -.01 .01 .04 -.02 

22. .58*** .66*** 7 5 * * *  7 5 * * *  -.09 -.03 .00 -.07 

23. 57*** .62*** 71*** gQ*** -.01 -.02 .01 .02 

24. -.05 -.09 -.11 .00 7g*** 5 5 * * *  54*** .66*** 

25. -.01 -.02 -.01 .03 5 5 * * *  7 4 * * *  .63*** .62*** 

26. .05 -.01 .03 .11 5 4 * * *  5 7 * * *  gl*** 7 7 * * *  

27. .01 -.02 .01 -.01 5 4 * * *  .56*** 7 3 * * *  .88*** 

28. .02 .05 .14* .20** -.08 .01 .04 .04 

29. .02 .14 .01 .09 -.02 .16* .07 .00 

30. .03 .07 .09 .09 -.09 -.09 .07 -.06 

31. .01 .03 .07 .09 -.09 -.03 .01 -.04 

32. .58*** 4g*** 52*** 5 7 * * *  .22 .12 23*** .16* 

33. 5 7 * * *  .66*** .65*** 5^*** .10 .14* .17* .10 

34. 50*** 52*** 5 7 * * *  .65*** .08 .11 19** .16* 

35. 45*** 49*** 5 3 * * *  .70 .11 .11 19** 21** 
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16 17 18 19 20 21 22 23 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 
13. 

14. 

15. 

16. 

17. .65*** - -

18. .58*** 67*** - -

19. g4*** 7i*** 74*** - -

20. .15* .14 .01 .07 — 

21. 19#* .26*** .21** .28*** .62*** — 

22. .26*** 19** .20** 22*** 5 9 * * *  7 3 * * *  — 

23. 29*** .18* .17* .22** 5 7 * * *  68*** g4*** — 

24. -.05 -.02 -.04 -.14* .09 .02 -.04 .05 

25. .11 20** .17* .01 .06 .08 .06 .06 

26. .14* .11 .19** .10 .09 .07 .04 .09 

27. .03 -.05 -.01 .05 .03 .06 -.04 -.03 

28. 92*** .62*** .55*** .62*** .14* .13 19** 27*** 

29. 52*** 72*** 65*** 5 3 * * *  -.01 .28*** .13 .15* 

30. 63*** 69*** g0*** 7 7 * * *  .07 .20** .20** 2i** 

31. .65*** 7 3 * * *  67*** 90*** .07 .22** .18* 19** 

32. .11 .09 .02 -.02 7 5 * * *  .50*** 55*** 5 7 * * *  

33. 27*** 24*** .17* .17* 5 9 * * *  7 5 * * #  69*** 67*** 

34. .21** .12 .14* .16* .55*** 64*** gl*** 7g *** 

35. .21** .16* .17* 20** 5 3 * * *  5 9 * * *  72*** 82*** 
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24 25 26 27 28 29 30 31 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 
17. 

18. 

19. 

20. 

21. 

22. 
23. 

24. 

25. 5 7 * * *  - -

26. 63*** 66*** — 

27. 66*** 58*** 76*** — 

28. -.04 .12 .13 .08 — 

29. .01 25*** .12 .11 5 4 * * *  — 

30. -.08 .07 .16* .01 67*** 62*** - -

31. -.05 .04 .11 .08 .66*** 5 7 * * *  gl*** — 

32. 27*** 21** 24*** .15* .18* .09 .04 .00 

33. .13 21** .17* .12 24*** .28*** .13 .13 

34. .11 .17* .18** .13 .20** .09 .14* .14* 

35. 19** .17* 24*** 19** 25*** .18* .17* 2i** 
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32 33 34 35 36 37 38 39 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. — 

33. .63*** 

34. 65*** 

35. 66*** 

73*** 

7i*** g2*** 
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12. 
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17. 

18. 

19. 

20 

21. 

22, 

23. 

24 
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27 

28 
29 

30 
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32 

33 

34 

35 
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40 41 42 43 44 
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1 2 3 4 5 6 7 

36. SPAl -.30*** -.10 -.02 -.07 -.11 -.12 -.17* 

37. SPA2 _ 25*** -.04 -.01 -.08 -.02 -.06 -.12 

38. SPA3 _ 24*** -.05 -.03 -.04 -.05 -.03 -.04 

39. SPA4 _31*** .03 -.01 -.03 -.04 -.06 .03 

40. Learning 1 .02 .01 .07 .01 -.02 .09 .09 

41. Learning2 .09 -.07 -.04 .07 .08 .17* .13 

42. Learning3 .09 -.05 .03 .04 .10 .04 .06 

43. Learning4 .01 -.01 .08 .12 .16* .14* .15* 

44. AP .04 -.02 .09 .11 .20** .15* .20** 

M .32 18.96 1.67 4.65 4.60 4.50 4.46 

SD .46 1.79 1.01 .74 .75 .87 .92 

8 9 10 11 12 13 14 15 

36. -.06 -.12 -.10 .03 7 5 * * *  .55*** 62*** 66*** 

37. -.03 -.04 -.06 .01 51*** .68*** 6i *** 6 j *** 

38. .01 -.03 -.04 .02 60*** 60*** g2*** go*** 

39. -.02 -.05 .02 -.02 4 5 * * *  4 7*** 65*** 7g*** 

40. .02 .02 .00 .11 -.14* .03 -.03 -.10 

41. -.03 .08 .07 .10 .01 -.01 .02 .00 

42. -.01 -.03 -.07 -.05 -.02 .10 -.03 -.01 

43. -.02 -.06 .04 .06 .14* 22*** .04 .05 

44. -.04 -.07 -.02 .03 .16* .20** .06 .05 

M 3.77 3.89 3.80 3.79 4.00 4.03 3.96 4.02 

SD 1.04 1.02 1.03 1.07 .95 .91 1.04 1.11 
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16 17 18 19 20 21 22 23 

36. -.05 -.04 -.02 -.14* .03 -.05 -.03 .05 

37. -.01 .04 .03 -.06 .03 .06 .02 .01 

38. -.03 .00 .06 -.01 .02 .03 -.03 .03 

39. .01 -.02 -.06 .04 .04 .03 -.01 .02 

40. .04 -.06 .12 .12 .09 -.01 .05 -.01 

41. .02 .11 .07 .11 .02 .03 .05 .11 

42. .02 .16* .07 .05 -.02 -.03 .03 .10 

43. .08 .18** .12 .11 .07 .00 .05 [9** 

44. .06 28*** .14* .16* .07 .03 .04 18** 

M 4.52 4.45 4.45 4.40 3.39 3.64 3.59 3.57 

SD .80 .85 .85 .91 .94 .98 .98 .95 

24 25 26 27 28 29 30 31 

36. .86*** 59*** 5 7 * * *  .63*** -.03 .04 -.09 -.08 

37. 7 7 * * *  63*** *** -.05 .08 -.07 -.03 

38. .66*** .63*** .82*** 78*** -.02 .06 .02 .01 

39. .58*** .58*** 72*** 85*** .07 .03 .00 .10 

40. -.09 -.02 -.04 -.09 .04 .01 .03 .10 

41. .01 .04 -.01 -.08 .07 .06 .10 .07 

42. -.02 .07 -.08 -.07 .04 .16* .06 .04 

43. .09 19** .00 -.01 .09 .17* -.02 .03 

44. .12 2i** .00 -.01 .09 .23** .06 .11 

M 4.07 4.18 4.02 4.07 4.54 4.53 4.46 4.45 

SD 1.01 .88 .99 1.11 .90 .93 .92 .92 
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32 33 34 35 36 37 38 39 

36. 23*** .11 .08 .20** — 

37. .13 23*** .11 .13 6j*** — 

38. 24*** .18** .20** .22** 64*** 69*** — 

39. .20** .17* .17* 24*** 5^*** 67*** 7 9 * * *  — 

40. .01 -.01 .02 .00 -.09 -.09 -.01 -.07 

41. .07 .09 .10 .15* .04 -.02 -.02 -.11 

42. -.02 -.02 .05 .01 .05 -.03 .00 -.02 

43. .13 .09 .14* 22*** 17** .03 .04 .05 

44. .12 .06 .12 .20** 17** -.01 .03 .03 

M 3.45 3.69 3.59 3.64 3.84 3.91 3.72 3.74 

SD 1.01 1.04 1.07 1.01 1.06 .97 1.02 1.09 

40 41 42 43 44 

36. 

37. 

38. 

39. 

40. 

41. -.07 " 

42. .04 -.10 — 

43. .13* .18** 41 *** — 

44. .12 22*** 46*** g9*** — 

M .00 .00 .00 -.03 .00 

SD 1.00 1.00 1.00 1.07 1.00 
Note. N = 244. GTL = general trait learning goal orientation; GTPP = general trait 

performance-prove goal orientation; GTPA = general trait performance-avoid goal 

orientation; DTL = domain-specific trait learning goal orientation; DSTPP = domain-

specific trait performance-prove goal orientation; DSTPA = domain-specific trait 

performance-avoid goal orientation; SL = state learning goal orientation; SPP = state 

performance-prove goal orientation; SPA = state performance-avoid goal orientation; 

Learning = learning outcome; AP = academic performance. 

* p <  .05. **p < .01. *** p < .001. 
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